• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Alliages à base de GaAs pour applications optoélectroniques et spintroniques / GaAs-based semiconductors for optoelectronic and spintronic applications

Azaizia, Sawsen 10 September 2018 (has links)
Ce travail de thèse est consacré à l’étude et au contrôle des propriétés de spin des électrons dans des structures à base de semi-conducteurs GaAs : GaAsN, GaAsBi et InGaAs. L'objectif est de donner une description fine de leurs propriétés électronique afin d'appréhender leur potentiel pour des applications en optoélectronique et spintronique. Nous avons focalisé l'étude des propriétés de spin des semi-conducteurs à base de nitrure dilué GaAsN sur les propriétés de l'interaction hyperfine entre l'électron et les noyaux des centres paramagnétiques naturellement présents dans ces matériaux. L'étude est réalisée par des expériences de photoluminescence pompe-sonde, en tirant parti du mécanisme de filtrage de spin par les centres paramagnétiques profonds présents dans le GaAsN massif : la recombinaison dépendante du spin (SDR). Nous démontrons, via l'enregistrement de la dynamique de la photoluminescence bande à bande, une nouvelle technique de détection des oscillations de spin cohérentes électron-noyau dues à l'interaction hyperfine. Ces oscillations sont observées dans l'application d'un champ magnétique externe et sans la nécessité d'utiliser les techniques de résonance de spin électronique. La caractérisation des matériaux bismures dilués GaAsBi en couches massives et en puits quantiques élaborés par épitaxie par jet moléculaire avec différentes concentrations de bismuth avec des expériences de spectroscopie de photoluminescence résolue en temps et en polarisation permet l’étude des propriétés de spin des électrons. Les résultats expérimentaux ont révélé une nette diminution du temps de relaxation de spin des électrons lorsque la fraction de bismuth augmente. Cette réduction significative du temps de relaxation de spin est liée à l'augmentation du couplage spin-orbite dans le matériau GaAsBi. La dynamique de relaxation observée est en bon accord avec le modèle de D'yakonov-Perel. Une troisième étude a porté sur le contrôle et la manipulation de spin des électrons dans les puits quantiques à semi-conducteurs III-V InGaAs/GaAs. Les hétérostructures élaborées sur des substrats d'orientation (111) présentent des propriétés de symétries particulières, qui combinées aux propriétés piézoélectriques, permettent sans application d’un champ électrique externe, de bloquer ou accélérer la dynamique de relaxation de spin. Ces observations démontrent la possibilité de contrôler le spin des porteurs à l'aide des propriétés intrinsèques de structures à puits quantiques, ce qui en fait de très bons candidats pour des applications futures de traitement et de stockage de l'information quantiques. / This thesis is devoted to the study of the electron spin properties for optoelectronic and spintronic applications of different GaAs-based semiconductor systems: GaAsN, GaAsBi, and InGaAs.The investigation of the spin properties of dilute nitride GaAsN-based semiconductors is centered on the properties of the hyperfine interaction between the electron and the nuclei at the paramagnetic centers naturally present in these compounds. The study is carried out, in the temporal domain, by a photoluminescence-based pump-probe technique and taking advantage of the spin-dependent relaxation mechanism via deep paramagnetic centers in GaAsN bulk. We demonstrate a novel detection scheme of the coherent electron-nuclear spin oscillations related to the hyperfine interaction and revealed by the band-to-band photoluminescence in zero external magnetic field and without the need of electron spin resonance techniques. GaAsBi semiconductors provide new opportunities for many optoelectronic applications thanks to possibility of greatly modulate the band gap and the spin-orbit interaction with the bismuth concentration. Using time-resolved photoluminescence spectroscopy experiment, we have characterized the optical and spin properties of bulk and quantum well GaAsBi structures elaborated by molecular beam epitaxy in a wide range of Bi-content. The experimental results revealed, on the one hand, the localization effect of exciton at low temperature and, on the other hand, the marked decrease of electron spin relaxation time when bismuth content increases. These results are consistent with Dyakonov-Perel spin relaxation mechanism whose efficiency is enhanced by the strong spin-orbit coupling interaction in GaAsBi alloy. The third study is focused on the demonstration of the control of the electron spin relaxation time in the III-V semiconductors by taking advantage of the symmetry properties allied to the piezoelectric effects in InGaAs (111)B heterostructures, without the need of any external electric field. We show that, in this system, the particular direction (111) associated with parameters related to InGaAs quantum wells such as indium concentration and quantum well width allows the control of spin electron relaxation time via piezoelectric field induced by the strain amplitude in the well. These observations demonstrate the possibility of monitoring electron spin relaxation process using intrinsic quantum confined structures, making them ideal candidates for use in quantum information storage and processing devices.
2

Efeitos de interações elétron-elétron e spin-órbita nas propriedades magneto-eletrônicas de magneto-transporte de sistemas confinados.

Destefani, Carlos Fernando 10 October 2003 (has links)
Made available in DSpace on 2016-06-02T20:15:27Z (GMT). No. of bitstreams: 1 TeseCFD.pdf: 6321506 bytes, checksum: b2c56cc8c4492b4e60e620c6c69f6788 (MD5) Previous issue date: 2003-10-10 / Effects of the direct and exchange electron-electron interaction, external magnetic field, symmetry of the charge carriers confining potential, radius, material g-factor, and also of the spin-orbit interaction in zincblende structure materials, are treated on the electronic and transport properties of semiconductor quantum dots (islands) charged by many particles. Three distinct kinds of confining potentials are considered: spherical, parabolic, and quasi-one-dimensional which, respectively, define a three-dimensional, two-dimensional, and one-dimensional island; the first one is more appropriated for the description of quantum dots formed in glassy matrices, while the last two better describe quantum dots litographically defined in a two-dimensional electron gas. Transport properties are considered in the spherical and quasi-one-dimensional islands, where we assume that the electronic current is in the resonant tunneling ballistic and coherent regimes, with essential role played by the excited states of the specific symmetry. We show that different geometries induce distinct level ordering in the island and that there is, in addition to the usual spin blockade, another kind of blockade mechanism which influences the system current; we label it by orbital blockade, because it is essentially due to the structure geometric confinement. We calculate the electronic spectrum of the many-particle system according to its symmetry. In the spherical case, we firstly use the LS-coupling scheme in order to obtain the eigenstates of an island charged by 3 electrons, following the orbital L and spin S total angular momentum addiction rules; we consider intensities of the magnetic field that allow us to neglect its diamagnetic contribution; the electron-electron interaction is treated as a perturbation in a Hartree-Fock way. In the following we use, in this same symmetry, the Roothaan and Pople-Nesbet matrix methods in order to deal with islands charged by 40 electrons, where the addition spectrum is calculated and Hund s rule is verified; we show how a magnetic field is able to violate such rule. The advantage of this numerical approach is the possibility to deal with a very high occupation in the island; the disadvantage is that their eigenstates do not have defined L and S values, as it is the case in the LS-coupling scheme. In the parabolic case, we employ a numerical diagonalization in order to obtain the island eigenstates charged by 2 electrons, without any restrictions regarding the magnetic field intensity or the system radius; we take into account both possible spinorbit couplings, one related to the implicit absence of zincblende crystalline structure inversion symmetry (Dresselhaus effect), and the other one related to the absence of structure inversion symmetry as caused by the confinement defining the two-dimensional electron gas (Rashba effect); we analyze the critical magnetic fields where both effects give origin to a intrinsic spin mixture in the island, inducing level anticrossings in the Fock-Darwin spectrum where intense spin-flips processes occur. In the quasi-onedimensional case, we just reproduce a known spectrum for an island charged by 4 electrons. / Efeitos da interação elétron-elétron direta e de troca, de um campo magnético externo, da simetria da região de confinamento dos portadores de carga, do raio dessa região, do fator g do material e das possíveis formas de interação spin-órbita em materiais com estrutura zincblende, são abordados nas propriedades eletrônicas e de transporte de pontos quânticos semicondutores (ilhas) populados por muitas partículas. Três distintos tipos de potenciais confinantes são considerados: esférico, parabólico, e quasiunidimensional, os quais, respectivamente, definem uma ilha tridimensional, bidimensional, e unidimensional; o primeiro é mais apropriado para a descrição de pontos quânticos formados em matrizes vítreas, enquanto os dois últimos descrevem melhor pontos quânticos litograficamente definidos em um gás de elétrons bidimensional. Propriedades de transporte só não são consideradas no caso parabólico. Nos demais casos, assumimos que a corrente eletrônica se dê em regime balístico e coerente de tunelamento ressonante, com participação essencial dos estados excitados da respectiva simetria. Comprovamos que diferentes geometrias induzem distintos ordenamentos de níveis da ilha e mostramos que, em adição ao bloqueio de spin usual, existe um outro mecanismo de bloqueio que influi na corrente do sistema, o qual rotulamos como bloqueio orbital por ser devido essencialmente ao confinamento geométrico da estrutura. Calculamos o espectro eletrônico do sistema de muitas partículas de acordo com sua simetria. No caso esférico, usamos primeiramente o esquema de acoplamento LS para obter os auto-estados de uma ilha populada por até 3 elétrons, seguindo as regras de adição dos momentos angulares totais orbital L e de spin S, e consideramos intensidades do campo magnético que nos permitam desprezar sua contribuição diamagnética; a interação elétron-elétron é tratada como uma perturbação à maneira Hartree-Fock. Em seguida, nessa mesma simetria, usamos os métodos matriciais de Roothaan e Pople- Nesbet para lidarmos com ilhas populadas por até 40 elétrons, onde o espectro de adição é calculado e a regra de Hund verificada; mostramos como um campo magnético é capaz de violar essa regra. A vantagem dessa abordagem numérica é que podemos lidar com um número muito maior de partículas; a desvantagem é que nem sempre os estados que essa teoria fornece são autoestados com L e S definidos, como ocorre no acoplamento LS. No caso parabólico, realizamos uma diagonalização numérica para a obtenção dos auto-estados de uma ilha populada por até 2 elétrons, sem restrições quanto à intensidade do campo magnético e nem quanto ao raio do sistema, e levando-se em conta ambos os acoplamentos spin-órbita possíveis, sendo um relativo à ausência implícita de simetria de inversão da estrutura cristalina zincblende (efeito Dresselhaus), e outro relativo à ausência de simetria de inversão estrutural causada pelo confinamento que define o gás de elétrons bidimensional (efeito Rashba); analisamos os campos magnéticos críticos onde esses dois efeitos causam uma mistura intrínseca dos spins na ilha, induzindo anticruzamentos de níveis no espectro Fock-Darwin onde intensos processos spin-flip ocorrrem. Já no caso quasi-unidimensional, apenas reproduzimos um espectro já conhecido para uma ilha populada por até 4 elétrons.

Page generated in 0.0261 seconds