• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analytical Examination Of Performance Limits For Shear Critical Reinforced Concrete Columns

Erguner, Kamil 01 November 2009 (has links) (PDF)
Most of the older reinforced concrete (RC) buildings have columns that are deficient when the current code requirements are considered. Therefore, performance of the columns determines the performance of the structure under the effects of earthquake induced lateral loads. It is recognized that no provision is proposed in TEC2007 to estimate the failure type called flexure-shear. Behavior of columns having probability of failing in flexure-shear failure mode is mostly underestimated by TEC2007 procedures. In addition, failure type classification of columns performed according to the linear and nonlinear procedures of TEC2007 needs to be examined with respect to the test results to cover all failure types including flexure-shear failure in order to lead the engineers develop economical and realistic retrofit solutions. In this study, different methods are explored to obtain reliable estimates for the performance of code deficient shear critical RC columns. Special considerations are given to Axial-Shear-Flexure interaction (ASFI) approach due to its mechanical background. After examination of different approaches, ASFI method with proposed modifications was selected as the most reliable model and lateral load-displacement analyses were performed on a database of shear critical columns. Findings were compared with the estimations of the nonlinear procedure given in Turkish Earthquake Code (TEC2007) for database columns. In addition, drift capacity equations and simplified safe drift capacity equations are proposed in light of statistical studies on the selected column specimens. In the last part of the study, performance evaluation of columns according to nonlinear procedures of FEMA 356, TEC2007, ASCE/SEI 41 update supplement, and EUROCODE 8 were conducted.
2

Strength and drift capacity of GFRP-reinforced concrete shear walls / Résistance des murs de cisaillement renforcés de PRFV

Mohamed, Nayera Ahmed Abdel-Raheem January 2013 (has links)
With the rise in constructing using FRP reinforcement, owing to corrosion problems in steel-reinforced structures, there is a need for a system to resist lateral loads induced from wind and earthquake loads. The present study addressed the applicability of reinforced-concrete shear walls totally reinforced with glass-fiber-reinforced polymer (GFRP) bars to attain reasonable strength and drift requirements as specified in different codes. Four large-scale shear walls - one reinforced with steel bars (as reference specimen) and three totally reinforced with GFRP bars - were constructed and tested to failure under quasi-static reversed cyclic lateral loading. The GFRP-reinforced walls had different aspect ratios covering the range of medium-rise walls. The reported test results clearly showed that properly designed and detailed GFRPreinforced walls could reach their flexural capacities with no strength degradation, and that shear, sliding shear, and anchorage failures were not major problems and could be effectively controlled. The results also showed recoverable and self-centering behavior up to allowable drift limits before moderate damage occurred and achieved a maximum drift meeting the limitation of most building codes. Acceptable levels of energy dissipation accompanied by relatively small residual forces, compared to the steel-reinforced shear wall, were observed. Finite element simulation was conducted and the analyses captured the main features of behavior. Interaction of flexural and shear deformations of the tested shear walls was investigated. It was found that relying on the diagonal transducers tended to overestimate shear distortions by 30% to 50%. Correcting the results based on the use of vertical transducers was assessed and found to produce consistent results. Decoupling the flexural and shear deformations was discussed. Using GFRP bars as elastic material gave uniform distribution of shear strains along the shear region, resulting in shear deformation ranging from 15 to 20% of total deformation. The yielding of the steel bars intensified the shear strains at the yielding location, causing significant degradation in shear deformation ranging from 2 to 40% of total deformation. The results obtained demonstrated significantly high utilization levels of such shear wall type, therefore, primary guidelines for seismic design of GFRP-reinforced shear wall in moderate earthquakes regions was presented, as no design guidelines for lateral load resistance for GFRP-reinforced walls are available in codes. The ultimate limit state was addressed by providing strength capacity that limit ductility demand to their safe flexural displacement capacity. The strength demands were derived from ground motion spectra using modification factors that depend on both the strength and energy absorption of the structure. Deformation capacity was derived by proposing new definitions for elastic (virtual yield) displacement and maximum allowable displacement. Strength modification factor was proposed based on the test results. The occurrence of "virtual plastic hinge" for GFRP-reinforced shear walls was described providing new definitions convenient with the behavior of the GFRP-reinforced shear walls. "Virtual plastic hinge" length was estimated based on observations and calculations. Subsequently, the experimental results were used to justify the proposed design procedure. The promising results could provide impetus for constructing shear walls reinforced with GFRP bars and constitute a step toward using GFRP reinforcement in such lateral-resisting systems.
3

A Study of the Response of Reinforced Concrete Frames with and without Masonry Infill Walls to Simulated Earthquakes

Jonathan Dean Monical (11852183) 18 December 2021 (has links)
This study focuses on non-ductile reinforced concrete (RC) frames built outside current practices. These structures are quite vulnerable to collapse during earthquakes. One option to retrofit buildings with poorly detailed RC columns is to construct full-height masonry infill walls to provide additional means to resist loads caused by gravity and increase lateral stiffness resulting in a reduction in drift demand. On the other hand, infill can cause reductions in drift capacity that offset the benefits of reductions in drift demand. Given these two opposing effects, this investigation addresses the following question: are poorly detailed RC frames with masonry infill walls any safer than similar RC frames without infill walls?
4

GFRP-reinforced concrete columns under simulated seismic loading / Colonnes en béton armé renforcées de PRFV sous un chargement sismique simulé

Mohammed, Mohammed Gaber Elshamandy January 2017 (has links)
Abstract : Steel and fiber-reinforced-polymer (FRP) materials have different mechanical and physical characteristics. High corrosion resistance, high strength to weight ratio, non-conductivity, favorable fatigue enable the FRP to be considered as alternative reinforcement for structures in harsh environment. Meanwhile, FRP bars have low modulus of elasticity and linear-elastic stress-strain curve. These features raise concerns about the applicability of using such materials as reinforcement for structures prone to earthquakes. The main demand for the structural members in structures subjected to seismic loads is dissipating energy without strength loss which is known as ductility. In the rigid frames, columns are expected to be the primary elements of energy dissipation in structures subjected to seismic loads. The present study addresses the feasibility of reinforced-concrete columns totally reinforced with glass-fiber-reinforced-polymer (GFRP) bars achieving reasonable strength and the drift requirements specified in various codes. Eleven full-scale reinforced concrete columns—two reinforced with steel bars (as reference specimens) and nine totally reinforced with GFRP bars—were constructed and tested to failure. The columns were tested under quasi-static reversed cyclic lateral loading and simultaneously subjected to compression axial load. The columns are 400 mm square cross-section with a shear span 1650 mm. The specimen simulates a column with 3.7 m in height in a typical building with the point of contra-flexure located at the column mid-height. The tested parameters were the longitudinal reinforcement ratio (0.63, 0.95 and 2.14), the spacing of the transverse stirrups (80, 100, 150), tie configuration (C1, C2, C3 and C4), and axial load level (20%, 30% and 40%). The test results clearly show that properly designed and detailed GFRP-reinforced concrete columns could reach high deformation levels with no strength degradation. An acceptable level of energy dissipation compared with steel-reinforced concrete columns is provided by GFRP reinforced concrete columns. The dissipated energy of GFRP reinforced concrete columns was 75% and 70% of the counter steel columns at 2.5% and 4% drift ratio respectively. High drift capacity achieved by the columns up to 10% with no significant loss in strength. The high drift capacity and acceptable dissipated energy enable the GFRP columns to be part of the moment resisting frames in regions prone to seismic activities. The experimental ultimate drift ratios were compared with the estimated drift ratios using the confinement Equation in CSA S806-12. It was found from the comparison that the confinement Equation underestimates values of the drift ratios thus the experimental drift ratios were used to modify transverse FRP reinforcement area in CSA S806-12. The hysteretic behavior encouraged to propose a design procedure for the columns to be part of the moderate ductile and ductile moment resisting frames. The development of design guidelines, however, depends on determining the elastic and inelastic deformations and on assessing the force modification factor and equivalent plastic-hinge length for GFRP-reinforced concrete columns. The experimental results of the GFRP-reinforced columns were used to justify the design guideline, proving the accuracy of the proposed design equations. / L’acier et les matériaux à base de polymères renforcés de fibres (PRF) ont des caractéristiques physiques et mécaniques différentes. La résistance à la haute corrosion, le rapport résistance vs poids, la non-conductivité et la bonne résistance à la fatigue font des barres d’armature en PRF, un renforcement alternatif aux barres d’armature en acier, pour des structures dans des environnements agressifs. Cependant, les barres d’armature en PRF ont un bas module d’élasticité et une courbe contrainte-déformation sous forme linéaire. Ces caractéristiques soulèvent des problèmes d'applicabilité quant à l’utilisation de tels matériaux comme renforcement pour des structures situées en forte zone sismique. La principale exigence pour les éléments structuraux des structures soumises à des charges sismiques est la dissipation d'énergie sans perte de résistance connue sous le nom de ductilité. Dans les structures rigides de type cadre, on s'attend à ce que les colonnes soient les premiers éléments à dissiper l'énergie dans les structures soumises à ces charges. La présente étude traite de la faisabilité des colonnes en béton armé entièrement renforcées de barres d’armature en polymères renforcés de fibres de verre (PRFV), obtenant une résistance et un déplacement latéral raisonnable par rapport aux exigences spécifiées dans divers codes. Onze colonnes à grande échelle ont été fabriquées: deux colonnes renforcées de barres d'acier (comme spécimens de référence) et neuf colonnes renforcées entièrement de barres en PRFV. Les colonnes ont été testées jusqu’à la rupture sous une charge quasi-statique latérale cyclique inversée et soumises simultanément à une charge axiale de compression. Les colonnes ont une section carrée de 400 mm avec une portée de cisaillement de 1650 mm pour simuler une colonne de 3,7 m de hauteur dans un bâtiment typique avec le point d’inflexion situé à la mi-hauteur. Les paramètres testés sont : le taux d’armature longitudinal (0,63%, 0,95% et 2,14 %), l'espacement des étriers (80mm, 100mm, 150 mm), les différentes configurations (C1, C2, C3 et C4) et le niveau de charge axiale (20%, 30 % et 40%). Les résultats des essais montrent clairement que les colonnes en béton renforcées de PRFV et bien conçues peuvent atteindre des niveaux de déformation élevés sans réduction de résistance. Un niveau acceptable de dissipation d'énergie, par rapport aux colonnes en béton armé avec de l’armature en acier, est atteint par les colonnes en béton armé de PRFV. L'énergie dissipée des colonnes en béton armé de PRFV était respectivement de 75% et 70% des colonnes en acier à un rapport déplacement latéral de 2,5% et 4%. Un déplacement supérieur a été atteint par les colonnes en PRFV jusqu'à 10% sans perte significative de résistance. La capacité d’un déplacement supérieur et l’énergie dissipée acceptable permettent aux colonnes en PRFV de participer au moment résistant dans des régions sujettes à des activités sismiques. Les rapports des déplacements expérimentaux ultimes ont été comparés avec les rapports estimés en utilisant l’Équation de confinement du code CSA S806-12. À partir de la comparaison, il a été trouvé que l’Équation de confinement sous-estime les valeurs des rapports de déplacement, donc les rapports de déplacement expérimentaux étaient utilisés pour modifier la zone de renforcement transversal du code CSA S806-12. Le comportement hystérétique encourage à proposer une procédure de conception pour que les colonnes fassent partie des cadres rigides à ductilité modérée et résistant au moment. Cependant, l'élaboration de guides de conception dépend de la détermination des déformations élastiques et inélastiques et de l'évaluation du facteur de modification de la force sismique et de la longueur de la rotule plastique pour les colonnes en béton armé renforcées de PRFV. Les résultats expérimentaux des colonnes renforcées de PRFV étudiées ont été utilisés pour justifier la ligne directrice de conception, ce qui prouve l’efficacité des équations de conception proposées.
5

Drift Capacity of Reinforced Concrete Walls with Lap Splices

William G Pollalis (10709154) 27 April 2021 (has links)
<p>Twelve large-scale reinforced concrete (RC) specimens were tested at Purdue University’s Bowen Laboratory to evaluate the deformability of structural walls with longitudinal lap splices at their bases. Eight specimens were tested under four-point bending and four specimens were tested as cantilevers under constant axial force and cyclic reversals of lateral displacement. All specimens failed abruptly by disintegration of the lap splice, irrespective of what loading method was used or what splice details were chosen. Previous work on lap splices has focused mainly on splice strength. But, in consideration of demands requiring structural toughness (e.g. blast, earthquake, differential settlement), deformability is arguably more important than strength. </p> <p>Approximations of wall drift-strain relationships are presented in combination with estimates of splice strength and deformability to provide lower-bound drift capacity estimates for RC walls with lap splices at their bases. Deformations in slender structural walls (with aspect ratios larger than 3) are controlled by flexure. Shear deformations must be considered for walls with smaller aspect ratios. For slender walls with lap splices comparable to those tested, the observations collected suggest that drift capacities can be as low as 0.5%. That is: splices with minimum concrete cover, minimum transverse reinforcement (0.25% transverse reinforcement ratio) terminating in hooks, and lap splice lengths selected to reach yielding in the spliced bars (approximately 60 bar diameters for splices of Grade-60 reinforcement) can fail as yield is reached or soon after. For splices of the same length, doubling the amount of hooked transverse reinforcement increases deformation capacity by nearly 50%. By maintaining the same transverse reinforcement ratio but confining splices with closed hoops (instead of hooks), deformation capacity nearly doubles. Increasing splice length increases the expected splice strength but also increases the strain required to reach the same drift ratio. </p> <p>Evidence from this and similar experimental programs suggests that lap splices with minimum cover and confined only by minimum transverse reinforcement terminating in hooks should not be used in critical sections of structural walls when toughness is required. To prevent abrupt failure during events that demand structural toughness, it is recommended that lap splices be shifted away from locations where yielding in structural walls is expected.</p>

Page generated in 0.0326 seconds