• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance of Superelastic Shape Memory Alloy Reinforced Concrete Elements Subjected to Monotonic and Cyclic Loading

Abdulridha, Alaa 14 May 2013 (has links)
The ability to adjust structural response to external loading and ensure structural safety and serviceability is a characteristic of Smart Systems. The key to achieving this is through the development and implementation of smart materials. An example of a smart material is a Shape Memory Alloy (SMA). Reinforced concrete structures are designed to sustain severe damage and permanent displacement during strong earthquakes, while maintaining their integrity, and safeguarding against loss of life. The design philosophy of dissipating the energy of major earthquakes leads to significant strains in the steel reinforcement and, consequently, damage in the plastic hinge zones. Most of the steel strain is permanent, thus leading to large residual deformations that can render the structure unserviceable after the earthquake. Alternative reinforcing materials such as superelastic SMAs offer strain recovery upon unloading, which may result in improved post-earthquake recovery. Shape Memory Alloys have the ability to dissipate energy through repeated cycling without significant degradation or permanent deformation. Superelastic SMAs possess stable hysteretic behavior over a certain range of temperature, where its shape is recoverable upon removal of load. Alternatively, Martensite SMAs also possess the ability to recover its shape through heating. Both types of SMA demonstrate promise in civil infrastructure applications, specifically in seismic-resistant design and retrofit of structures. The primary objective of this research is to investigate experimentally the performance of concrete beams and shear walls reinforced with superelastic SMAs in plastic hinge regions. Furthermore, this research program involves complementary numerical studies and the development of a proposed hysteretic constitutive model for superelastic SMAs applicable for nonlinear finite element analysis. The model considers the unique characteristics of the cyclic response of superelastic materials.
2

GFRP-reinforced concrete columns under simulated seismic loading / Colonnes en béton armé renforcées de PRFV sous un chargement sismique simulé

Mohammed, Mohammed Gaber Elshamandy January 2017 (has links)
Abstract : Steel and fiber-reinforced-polymer (FRP) materials have different mechanical and physical characteristics. High corrosion resistance, high strength to weight ratio, non-conductivity, favorable fatigue enable the FRP to be considered as alternative reinforcement for structures in harsh environment. Meanwhile, FRP bars have low modulus of elasticity and linear-elastic stress-strain curve. These features raise concerns about the applicability of using such materials as reinforcement for structures prone to earthquakes. The main demand for the structural members in structures subjected to seismic loads is dissipating energy without strength loss which is known as ductility. In the rigid frames, columns are expected to be the primary elements of energy dissipation in structures subjected to seismic loads. The present study addresses the feasibility of reinforced-concrete columns totally reinforced with glass-fiber-reinforced-polymer (GFRP) bars achieving reasonable strength and the drift requirements specified in various codes. Eleven full-scale reinforced concrete columns—two reinforced with steel bars (as reference specimens) and nine totally reinforced with GFRP bars—were constructed and tested to failure. The columns were tested under quasi-static reversed cyclic lateral loading and simultaneously subjected to compression axial load. The columns are 400 mm square cross-section with a shear span 1650 mm. The specimen simulates a column with 3.7 m in height in a typical building with the point of contra-flexure located at the column mid-height. The tested parameters were the longitudinal reinforcement ratio (0.63, 0.95 and 2.14), the spacing of the transverse stirrups (80, 100, 150), tie configuration (C1, C2, C3 and C4), and axial load level (20%, 30% and 40%). The test results clearly show that properly designed and detailed GFRP-reinforced concrete columns could reach high deformation levels with no strength degradation. An acceptable level of energy dissipation compared with steel-reinforced concrete columns is provided by GFRP reinforced concrete columns. The dissipated energy of GFRP reinforced concrete columns was 75% and 70% of the counter steel columns at 2.5% and 4% drift ratio respectively. High drift capacity achieved by the columns up to 10% with no significant loss in strength. The high drift capacity and acceptable dissipated energy enable the GFRP columns to be part of the moment resisting frames in regions prone to seismic activities. The experimental ultimate drift ratios were compared with the estimated drift ratios using the confinement Equation in CSA S806-12. It was found from the comparison that the confinement Equation underestimates values of the drift ratios thus the experimental drift ratios were used to modify transverse FRP reinforcement area in CSA S806-12. The hysteretic behavior encouraged to propose a design procedure for the columns to be part of the moderate ductile and ductile moment resisting frames. The development of design guidelines, however, depends on determining the elastic and inelastic deformations and on assessing the force modification factor and equivalent plastic-hinge length for GFRP-reinforced concrete columns. The experimental results of the GFRP-reinforced columns were used to justify the design guideline, proving the accuracy of the proposed design equations. / L’acier et les matériaux à base de polymères renforcés de fibres (PRF) ont des caractéristiques physiques et mécaniques différentes. La résistance à la haute corrosion, le rapport résistance vs poids, la non-conductivité et la bonne résistance à la fatigue font des barres d’armature en PRF, un renforcement alternatif aux barres d’armature en acier, pour des structures dans des environnements agressifs. Cependant, les barres d’armature en PRF ont un bas module d’élasticité et une courbe contrainte-déformation sous forme linéaire. Ces caractéristiques soulèvent des problèmes d'applicabilité quant à l’utilisation de tels matériaux comme renforcement pour des structures situées en forte zone sismique. La principale exigence pour les éléments structuraux des structures soumises à des charges sismiques est la dissipation d'énergie sans perte de résistance connue sous le nom de ductilité. Dans les structures rigides de type cadre, on s'attend à ce que les colonnes soient les premiers éléments à dissiper l'énergie dans les structures soumises à ces charges. La présente étude traite de la faisabilité des colonnes en béton armé entièrement renforcées de barres d’armature en polymères renforcés de fibres de verre (PRFV), obtenant une résistance et un déplacement latéral raisonnable par rapport aux exigences spécifiées dans divers codes. Onze colonnes à grande échelle ont été fabriquées: deux colonnes renforcées de barres d'acier (comme spécimens de référence) et neuf colonnes renforcées entièrement de barres en PRFV. Les colonnes ont été testées jusqu’à la rupture sous une charge quasi-statique latérale cyclique inversée et soumises simultanément à une charge axiale de compression. Les colonnes ont une section carrée de 400 mm avec une portée de cisaillement de 1650 mm pour simuler une colonne de 3,7 m de hauteur dans un bâtiment typique avec le point d’inflexion situé à la mi-hauteur. Les paramètres testés sont : le taux d’armature longitudinal (0,63%, 0,95% et 2,14 %), l'espacement des étriers (80mm, 100mm, 150 mm), les différentes configurations (C1, C2, C3 et C4) et le niveau de charge axiale (20%, 30 % et 40%). Les résultats des essais montrent clairement que les colonnes en béton renforcées de PRFV et bien conçues peuvent atteindre des niveaux de déformation élevés sans réduction de résistance. Un niveau acceptable de dissipation d'énergie, par rapport aux colonnes en béton armé avec de l’armature en acier, est atteint par les colonnes en béton armé de PRFV. L'énergie dissipée des colonnes en béton armé de PRFV était respectivement de 75% et 70% des colonnes en acier à un rapport déplacement latéral de 2,5% et 4%. Un déplacement supérieur a été atteint par les colonnes en PRFV jusqu'à 10% sans perte significative de résistance. La capacité d’un déplacement supérieur et l’énergie dissipée acceptable permettent aux colonnes en PRFV de participer au moment résistant dans des régions sujettes à des activités sismiques. Les rapports des déplacements expérimentaux ultimes ont été comparés avec les rapports estimés en utilisant l’Équation de confinement du code CSA S806-12. À partir de la comparaison, il a été trouvé que l’Équation de confinement sous-estime les valeurs des rapports de déplacement, donc les rapports de déplacement expérimentaux étaient utilisés pour modifier la zone de renforcement transversal du code CSA S806-12. Le comportement hystérétique encourage à proposer une procédure de conception pour que les colonnes fassent partie des cadres rigides à ductilité modérée et résistant au moment. Cependant, l'élaboration de guides de conception dépend de la détermination des déformations élastiques et inélastiques et de l'évaluation du facteur de modification de la force sismique et de la longueur de la rotule plastique pour les colonnes en béton armé renforcées de PRFV. Les résultats expérimentaux des colonnes renforcées de PRFV étudiées ont été utilisés pour justifier la ligne directrice de conception, ce qui prouve l’efficacité des équations de conception proposées.
3

Performance of Superelastic Shape Memory Alloy Reinforced Concrete Elements Subjected to Monotonic and Cyclic Loading

Abdulridha, Alaa January 2013 (has links)
The ability to adjust structural response to external loading and ensure structural safety and serviceability is a characteristic of Smart Systems. The key to achieving this is through the development and implementation of smart materials. An example of a smart material is a Shape Memory Alloy (SMA). Reinforced concrete structures are designed to sustain severe damage and permanent displacement during strong earthquakes, while maintaining their integrity, and safeguarding against loss of life. The design philosophy of dissipating the energy of major earthquakes leads to significant strains in the steel reinforcement and, consequently, damage in the plastic hinge zones. Most of the steel strain is permanent, thus leading to large residual deformations that can render the structure unserviceable after the earthquake. Alternative reinforcing materials such as superelastic SMAs offer strain recovery upon unloading, which may result in improved post-earthquake recovery. Shape Memory Alloys have the ability to dissipate energy through repeated cycling without significant degradation or permanent deformation. Superelastic SMAs possess stable hysteretic behavior over a certain range of temperature, where its shape is recoverable upon removal of load. Alternatively, Martensite SMAs also possess the ability to recover its shape through heating. Both types of SMA demonstrate promise in civil infrastructure applications, specifically in seismic-resistant design and retrofit of structures. The primary objective of this research is to investigate experimentally the performance of concrete beams and shear walls reinforced with superelastic SMAs in plastic hinge regions. Furthermore, this research program involves complementary numerical studies and the development of a proposed hysteretic constitutive model for superelastic SMAs applicable for nonlinear finite element analysis. The model considers the unique characteristics of the cyclic response of superelastic materials.
4

SYSTEM-LEVEL SEISMIC PERFORMANCE QUANTIFICATION OF REINFORCED MASONRY BUILDINGS WITH BOUNDARY ELEMENTS

Ezzeldin, Mohamed January 2017 (has links)
The traditional construction practice used in masonry buildings throughout the world is limited to walls with rectangular cross sections that, when reinforced with steel bars, typically accommodate only single-leg horizontal ties and a single layer of vertical reinforcement. This arrangement provides no confinement at the wall toes, and it may lead to instability in critical wall zones and significant structural damage during seismic events. Conversely, the development of a new building system, constructed with reinforced masonry (RM) walls with boundary elements, allows closed ties to be used as confinement reinforcement, thus minimizing such instability and its negative consequences. Relative to traditional walls, walls with boundary elements have enhanced performance because they enable the compression reinforcement to remain effective up to much larger displacement demands, resulting in a damage tolerant system and eventually, more resilient buildings under extreme events. Research on the system-level (complete building) performance of RM walls with boundary elements is, at the time of publication of this dissertation, nonexistent in open literature. What little research has been published on this innovative building system has focused only on investigating the component-level performance of RM walls with boundary elements under lateral loads. To address this knowledge gap, the dissertation presents a comprehensive research program that covered: component-level performance simulation; system-level (complete building) experimental testing; seismic risk assessment tools; and simplified analytical models to facilitate adoption of the developed new building system. In addition, and in order to effectively mobilize the knowledge generated through the research program to stakeholders, the work has been directly related to building codes in Canada and the USA (NBCC and ASCE-7) as well as other standards including FEMA P695 (FEMA 2009) (Chapter 2), TMS 402 and CSA S304 (Chapter 3), FEMA P58 (FEMA 2012) (Chapter 4), and ASCE-41 (Chapter 5). Chapter 1 of the dissertation highlights its objectives, focus, scope and general organization. The simulation in Chapter 2 is focused on evaluating the component-level overstrength, period-based ductility, and seismic collapse margin ratios under the maximum considered earthquakes. Whereas previous studies have shown that traditional RM walls might not meet the collapse risk criteria established by FEMA P695, the analysis presented in this chapter clearly shows that RM shear walls with boundary elements not only meet the collapse risk criteria, but also exceed it with a significant margin. Following the component-level simulation presented in Chapter 2, Chapter 3 focused on presenting the results of a complete two-story asymmetrical RM shear wall building with boundary elements, experimentally tested under simulated seismic loading. This effort was aimed at demonstrating the discrepancies between the way engineers design buildings (as individual components) and the way these buildings actually behave as an integrated system, comprised of these components. In addition, to evaluate the enhanced resilience of the new building system, the tested building was designed to have the same lateral resistance as previously tested building with traditional RM shear walls, thus facilitating direct comparison. The experimental results yielded two valuable findings: 1) it clearly demonstrated the overall performance enhancements of the new building system in addition to its reduced reinforcement cost; and 2) it highlighted the drawbacks of the building acting as a system compared to a simple summation of its individual components. In this respect, although the slab diaphragm-wall coupling enhanced the building lateral capacity, this enhancement also meant that other unpredictable and undesirable failure modes could become the weaker links, and therefore dominate the performance of the building system. Presentation of these findings has attracted much attention of codes and standards committees (CSA S304 and TMS 402/ACI 530/ASCE 5) in Canada and the USA, as it resulted in a paradigm shift on how the next-generation of building codes (NBCC and ASCE-7) should be developed to address system-levels performance aspects. Chapter 4 introduced an innovative system-level risk assessment methodology by integrating the simulation and experimental test results of Chapters 2 and 3. In this respect, the experimentally validated simulations were used to generate new system-level fragility curves that provide a realistic assessment of the overall building risk under different levels of seismic hazard. Although, within the scope of this dissertation, the methodology has been applied only on buildings constructed with RM walls with boundary elements, the developed new methodology is expected to be adopted by stakeholders of other new and existing building systems and to be further implemented in standards based on the current FEMA P58 risk quantification approaches. Finally, and in order to translate the dissertation findings into tools that can be readily used by stakeholders to design more resilient buildings in the face of extreme events, simplified backbone and hysteretic models were developed in Chapter 5 to simulate the nonlinear response of RM shear wall buildings with different configurations. These models can be adapted to perform the nonlinear static and dynamic procedures that are specified in the ASCE-41 standards for both existing and new building systems. The research in this chapter is expected to have a major positive impact, not only in terms of providing more realistic model parameters for exiting building systems, but also through the introduction of analytical models for new more resilient building systems to be directly implemented in future editions of the ASCE-41. This dissertation presents a cohesive body of work that is expected to influence a real change in terms of how we think about, design, and construct buildings as complex systems comprised of individual components. The dissertation’s overarching hypothesis is that previous disasters have not only exposed the vulnerability of traditional building systems, but have also demonstrated the failure of the current component-by-component design approaches to produce resilient building systems and safer communities under extreme events. / Dissertation / Doctor of Philosophy (PhD)
5

Colloidal flocks in challenging environments / Troupeaux colloïdaux en milieux défavorables

Morin, Alexandre 18 September 2018 (has links)
Le déplacement cohérent dirigé au sein de troupeaux, d’essaims, de nuées, prend place à toutes les échelles du vivant. En cherchant à rationaliser l’émergence de tels mouvements collectifs, les physiciens ont décrit ces assemblées comme des matériaux actifs. Ces matériaux sont formés de constituants auto-propulsés qui se déplacent spontanément dans une direction commune. Cette thèse expérimentale s’appuie sur la réalisation de troupeaux synthétiques pour explorer les propriétés de la matière active polaire dans des situations défavorables à son auto-organisation : leur dynamique en milieux désordonnés et leur réponse à des perturbations externes. Des rouleurs colloïdaux aux interactions d’alignement sont confinés au sein de dispositifs microfluidiques. Au-delà d’une densité seuil, ils forment un troupeau caractérisé par l’émergence d’un ordre en orientation de longue portée. Ces troupeaux colloïdaux font office de prototypes de la matière active polaire. Nous avons étudié la réponse d’un liquide actif polaire assemblé à partir de rouleurs colloïdaux. Nous avons montré que face à une perturbation longitudinale leur réponse est hystérétique. Nous avons expliqué théoriquement ce comportement non-linéaire et l’avons exploité pour réaliser des oscillateurs microfluidiques autonomes. Nous avons également étudié la dynamique de troupeaux colloïdaux qui se propagent dans des environnements hétérogènes. La présence d’obstacles distribués aléatoirement focalise les troupeaux le long de chemins privilégiés qui forment un réseau épars et tortueux. Augmenter le désordre conduit à la destruction du troupeau. Nous avons démontré que la suppression du mouvement collectif consiste en une transition discontinue, générique à tous les matériaux actifs polaires. / Directed collected motion within herds, swarms and flocks, is a phenomenon that takes place at all scales in living systems. Physicists have rationalized the emergence of such collective behavior. They have described these systems as active materials. These materials are assembled from self-propelled units that spontaneously move in the same direction. By experimentally studying synthetic flocks, this work uncovers some properties of polar active materials in situations that disfavor their self-organization: their dynamics in disordered environments and their response to external perturbations. Colloidal rollers with alignment interactions are confined within microfluidic devices. At high density, they spontaneously form a flock which is characterized by the emergence of orientational long-ranged order. These colloidal flocks are prototypical realizations of polar active matter. We have studied the response of a polar active liquid assembled from colloidal rollers. We have shown that they display a hysteretic response to longitudinal perturbations. We have theoretically accounted for this non-linear behavior. We have used this behavior to realize autonomous microfluidic oscillators. We have also studied the dynamics of colloidal flocks that propagate through heterogeneous environments. Randomly positioned obstacles focalize flocks along favored channels that form a sparse and tortuous network. Increasing disorder leads to the destruction of flocks. We have demonstrated that the suppression of collective motion is a discontinuous transition generic to all polar active materials.
6

Assessment of strength, stiffness, and deformation capacity of concrete squat walls reinforced with GFRP bars / Évaluation de la résistance, la rigidité et la capacité en déformation des voiles courts en béton armé d’armature en PRFV

Arafa, Ahmed January 2017 (has links)
Abstract : The present study addressed the feasibility of reinforced-concrete squat walls totally reinforced with GFRP bars to attain reasonable strength and drift requirements as specified in different codes. Nine large-scale squat walls with aspect ratio (height to length ratio) of 1.33—one reinforced with steel bars (as reference specimen) and eight totally reinforced with GFRP bars—were constructed and tested to failure under quasi-static reversed cyclic lateral loading. The key studied parameters were: (1) use of bidiagonal web reinforcement; (2) use of bidiagonal sliding reinforcement; and (3) web reinforcement configuration (horizontal and/or vertical) and ratio. The reported test results clearly revealed that GFRP-reinforced concrete (RC) squat walls have a satisfactory strength and stable cyclic behavior as well as self-centering ability that assisted in avoiding sliding shear that occurred in the companion steel-reinforced wall following steel yielding. The results are promising regarding using GFRP-reinforced squat walls in areas prone to seismic risk where environmental conditions are adverse to steel reinforcement. Bidiagonal web reinforcement was shown to be more effective than conventional web reinforcement in controlling shear-cracks width. Using bidiagonal sliding reinforcement was demonstrated to be not necessary to prevent sliding shear. The horizontal web reinforcement ratio was found to have a significant effect in enhancing the ultimate strength and deformation capacity as long as the failure is dominant by diagonal tension. Existence of both horizontal and vertical web reinforcement was shown to be essential for cracks recovery. Assessment of the ultimate strengths using the available FRP-reinforced elements code and guidelines (CSA S806-12 and ACI 440.1R-15) was conducted and some recommendations were proposed to attain a reasonable estimation of ultimate strengths. Given their importance in estimating the walls’ later displacement, the effective flexural and shear stiffness of the investigated walls were evaluated. It was found that the cracked shear stiffness could be estimated based on the truss model; while the flexural stiffness can be estimated based on the available expressions in FRP-reinforced elements codes and guidelines. Based on a regression analysis, a simple model that directly correlates the flexural and shear stiffness degradation of the test walls to their top lateral drift was also proposed. / Résumé : La présente étude traite de la faisabilité de voiles courts en béton armé totalement renforcés avec des barres de polymères renforcés de fibres de verre (PRFV), obtenant une résistance et un déplacement latéral raisonnable par rapport aux exigences spécifiées dans divers codes. Neuf voiles à grande échelle ont été construits: un renforcé avec des barres d'acier (comme spécimen de référence) et huit renforcés totalement avec des barres de PRFV. Les voiles ont été testés jusqu’à la rupture sous une charge quasi-statique latérale cyclique inversée. Les voiles ont une hauteur de 2000 mm, une largeur de 1500 mm (élancement 2000 mm/1500 mm = 1,33) et une épaisseur de 200 mm. Les paramètres testés sont : 1) armature bi-diagonale dans l’âme; 2) armature bi-diagonale dans l’encastrement du mur à la fondation (zone de glissement); 3) configuration d’armature verticale et horizontale réparties dans l’âme et taux d’armature. Les résultats des essais ont clairement montré que les voiles courts en béton armé de PRFV ont une résistance satisfaisante et un comportement cyclique stable ainsi qu'une capacité d'auto-centrage qui ont aidé à éviter la rupture par glissement à l’encastrement (sliding shear). Ce mode de rupture (sliding shear) s’est produit pour le voile de référence armé d’acier après la plastification de l’armature. Les résultats sont prometteurs concernant l'utilisation de voiles en béton armé de PRFV dans les régions sismiques dans lesquelles les conditions environnementales sont défavorables à l’armature d’acier (corrosion). L’armature bi-diagonale en PRFV dans l’âme s’est avérée plus efficace pour le contrôle des largeurs de fissures de cisaillement comparativement à l’armature répartie dans l’âme. L'utilisation d'un renforcement de cisaillement bi-diagonal a été démontrée comme n'étant pas nécessaire dans les voiles courts en béton armé de PRFV pour prévenir la rupture par glissement à l’encastrement (shear sliding). Par ailleurs, les résultats d’essais ont montré que le taux d’armature horizontale répartie dans l’âme a un effet significatif sur l’augmentation de la résistance et la capacité en déformation des voiles dont la rupture par effort tranchant se fait par des fissures diagonales (tension failure). L'existence d’armature verticale et horizontale répartie dans l’âme du voile en béton armé de PRFV s'est révélée essentielle pour l’ouverture et la fermeture des fissures au cours des chargements cycliques. Les normes calcul CSA S806-12 et ACI 440.1R-15 ont été utilisées pour évaluer la résistance au cisaillement des voiles courts en béton armé de PRFV. Certaines recommandations ont été proposées pour obtenir une estimation raisonnable des forces ultimes. Compte tenu de leur importance dans l'estimation du déplacement latérale des voiles, la rigidité effective en flexion et en cisaillement des voiles étudiés a été évaluée. On a constaté que la raideur de cisaillement du béton fissuré pourrait être estimée en utilisant le modèle de treillis. La rigidité à la flexion peut être, quant à elle, estimée en fonction des expressions disponibles dans les normes et les guides de conception de membrures en béton armé avec des barres en PRFV. Sur la base d'une analyse de régression, un modèle simple qui corrèle directement la dégradation de la rigidité en flexion et en cisaillement des voiles courts en béton armé de PRFV testés avec le déplacement latérale dans la partie supérieure des voiles a également été proposé.

Page generated in 0.0796 seconds