Spelling suggestions: "subject:"droplet combustion"" "subject:"droplet ombustion""
1 |
Numerical solution for the droplet combustionDonini, Mariovane Sabino January 2017 (has links)
Submitted by Cátia Araújo (catia.araujo@unipampa.edu.br) on 2017-09-29T13:05:00Z
No. of bitstreams: 1
Mariovane Sabino Donini - 2017.pdf: 4347435 bytes, checksum: b83edb6c2d0b7868757722dc435be9fa (MD5) / Approved for entry into archive by Marlucy Farias Medeiros (marlucy.farias@unipampa.edu.br) on 2017-09-29T16:25:43Z (GMT) No. of bitstreams: 1
Mariovane Sabino Donini - 2017.pdf: 4347435 bytes, checksum: b83edb6c2d0b7868757722dc435be9fa (MD5) / Made available in DSpace on 2017-09-29T16:25:43Z (GMT). No. of bitstreams: 1
Mariovane Sabino Donini - 2017.pdf: 4347435 bytes, checksum: b83edb6c2d0b7868757722dc435be9fa (MD5)
Previous issue date: 2017 / In the present work, vaporization and combustion of an isolated fuel droplet at diferente ambient temperatures are examined numerically in order to analyze the effect of buoyancy force on the flame. Generally, fuel droplets in combustion devices are so small that the influence of buoyancy force on vaporization and combustion of droplets is negligible. On the other hand, fuel droplets in experimental devices are affected by the buoyancy force due to their diameters being around or more than 1 mm. To reduce the buoyancy effects, expensive experimental studies are performed in microgravity ambient (drop-tower or out of space). In normal-gravity conditions, the buoyancy force is induced by temperature gradient on ambient atmosphere. The buoyancy is positive in regions of hot gases and negative in regions of cold gases compared with the ambient atmosphere gas. Hot gases move upward and cold gases downward. Playing with the positive buoyancy force of hot gases around the flame and with the negative (cold) buoyancy force of cold gases around the droplet via ambient atmosphere temperature, it is possible to modify the flame shape. In the numerical simulations, incompressible Navier–Stokes equations along with mixture fraction and excess enthalpy conservation equations are solved using a finite volume technique with a uniform structured grid. An artificial compressibility method was applied to reach steady state solutions. The numerical predictions have been compared with analytical results for a zero gravity condition, showing good agreement. For normal gravity condition the numerical results showed that when the ambient temperature increases, the velocity gradient and buoyancy source term decreases. Despite that, the flame increased in all directions. The results have also shown that increasing the ambient temperature, decreases the temperature gradient in the flame, which ends up affecting the flame position. / No presente trabalho, a vaporização e a combustão de uma gota de combustível isolada a diferentes temperaturas ambiente são examinadas numericamente para analisar o efeito da força de flutuação na chama. Geralmente, as gotículas de combustível em dispositivos de combustão são tão pequenas que a influência da força de flutuação na vaporização e na combustão de gotículas é insignificante. Por outro lado, as gotículas de combustível em dispositivos experimentais são afetadas pela força de flutuabilidade devido ao seu diâmetro em torno de ou mais de 1 mm. Para reduzir os efeitos de flutuabilidade, estudos experimentais caros são realizados em ambiente de microgravidade (drop-tower ou fora do espaço). Em condições de gravidade normal, a força de flutuação é induzida por gradiente de temperatura na atmosfera ambiente. A flutuabilidade é positiva em regiões de gases quentes e negativas em regiões de gases frios em comparação com o gás atmosférico ambiente. Os gases quentes movem-se para cima e os gases frios para baixo. Jogando com a força de flutuação positiva dos gases quentes ao redor da chama e com a força de flutuação negativa (fria) dos gases frios ao redor da gota através da temperatura da atmosfera ambiente, é possível modificar a forma da chama. Nas simulações numéricas, as equações de Navier-Stokes incompressíveis juntamente com a fração de mistura e as equações de conservação de entalpia em excesso são resolvidas usando uma técnica de volume finito com uma grade estruturada uniforme. Foi aplicado um método de compressibilidade artificial para alcançar soluções de estado estacionário. As previsões numéricas foram comparadas com resultados analíticos para uma condição de gravidade zero, mostrando boa concordância. Para a condição de gravidade normal, os resultados numéricos mostraram que, quando a temperatura ambiente aumenta, o gradiente de velocidade e o termo da fonte de flutuação diminuem. Apesar disso, a chama aumentou em todas as direções. Os resultados também mostraram que aumentar a temperatura ambiente, diminui o gradiente de temperatura na chama, o que acaba afetando a posição da chama.
|
2 |
An experimental examination of combustion of isolated liquid fuel droplets with polymeric and nanoparticle additivesGhamari, Mohsen 01 August 2016 (has links)
In spite of recent attention to renewable sources of energy, liquid hydrocarbon fuels are still the main source of energy for industrial and transportation systems. Manufactures and consumers are consistently looking for ways to optimize the efficiency of fuel combustion in terms of cost, emissions and consumer safety. In this regard, increasing burning rate of liquid fuels has been of special interest in both industrial and transportation systems. Recent studies have shown that adding combustible nano-particles could have promising effects on improving combustion performance of liquid fuels. Combustible nano-particles could enhance radiative and conductive heat transfer and also mixing within the droplet. Polymeric additive have also shown promising effect on improving fire safety by suppressing spreading behavior and splatter formation in case of crash scenario. Polymers are also known to have higher burning rate than regular hydrocarbon fuels. Therefore adding polymeric additive could have the potential to increase the burning rate.
In this work, combustion dynamics of liquid fuel droplets with both polymeric and nanoparticle additives is studied in normal gravity. High speed photography is employed and the effect of additive concentration on droplet burning rate, burning time, extinction and soot morphology is investigated.
Polymer added fuel was found to have a volatility controlled combustion with four distinct regimes. The first three zones are associated with combustion of base fuel while the polymer burns last and after a heating zone because of its higher boiling point. Polymer addition reduces the burning rate of the base fuel in the first zone by means of increasing viscosity and results in nucleate boiling and increased burning rates in the second and third stages. Overall, polymer addition resulted in a higher burning rate and shorter burning time in most of the scenarios. Colloidal suspensions of carbon-based nanomaterials in liquid fuels were also tested at different particle loadings. It was found that dispersing nanoparticles results in higher burning rate by means of enhanced radiative heat absorption and thermal conductivity. An optimum particle loading was found for each particle type at which the maximum burning rate was achieved. It was observed that the burning rate again starts to reduce after this optimum point most likely due to the formation of large aggregates that reduce thermal conductivity and suppress the diffusion of species.
|
3 |
微小重力下での直線燃料液滴列に沿った火炎伝ぱ (第3報, 火炎伝ぱのモデル計算)梅村, 章, UMEMURA, Akira, 内田, 正宏, UCHIDA, Masahiro 09 1900 (has links)
No description available.
|
4 |
Characterization of Ignition and Combustion of Nitromethane and Isopropyl Nitrate Monopropellant DropletsAngela W. Mbugua (5930036) 11 June 2019 (has links)
<p>Conventional
rocket propellants such as monomethyl hydrazine (MMH) and hydrazine have been
used for decades due to their high specific impulse and performance. However,
interest in greener alternatives, including HAN or HAN-based propellants, has
grown due to high levels of toxicity and difficulties in the handling and
storage of conventional fuels. Included among potential propellants are
monopropellants nitromethane (NM) and isopropyl nitrate (IPN) and their blends.
Though large-scale investigations on the ignition and combustion of these fuels
have been done, the ignition and combustion processes of these monopropellant
fuels are still not well understood. Droplet studies have been traditionally
and extensively employed to decipher the influence of ambient conditions and
fuel properties on ignition and combustion of different fuels. These
fundamental studies allow for the isolation of different factors such as
ambient temperature and initial droplet size among others, to provide a deeper
understanding of their effects in overall spray combustion.</p>
<p> </p>
<p>The
research described here seeks to add to the knowledge on the ignition and
combustion processes of NM and IPN through single droplet ignition and
combustion studies. To this end, the first effort has been to establish a
suitable method of studying the ignition and combustion of droplets in
conditions similar to those in practical systems. Droplet ignition delay
measurements for NM and IPN droplets have also been conducted, and the
influence of ambient temperature and droplet size has been studied. The double
flame structures of NM and IPN, representative of hybrid combustion, have also
been observed. In addition, the applicability of the hybrid combustion model,
developed to predict mass burning rates for hypergolic fuels exhibiting hybrid
burning including MMH, UDMH and hydrazine,
has been assessed. Lastly, the ability of the quasi-steady droplet ignition
model to predict ignition delays of IPN and NM monopropellant droplets is also
discussed.</p>
|
5 |
MICROGRAVITY DROPLET COMBUSTION IN CARBON DIOXIDE ENRICHED ENVIRONMENTSHicks, Michael C. 31 May 2016 (has links)
No description available.
|
6 |
Development and Evaluation of DNS of Aluminum Droplet Combustion Using the VOF ApproachLim, Soomin 01 January 2024 (has links) (PDF)
This thesis focuses on the direct numerical simulation of the combustion of a single aluminum droplet with phase change. For this purpose, the Volume of Fluid (VOF) method is employed for the direct numerical simulation of two distinct phases. To model the droplet combustion, the phase change (evaporation) and chemical reactions are modeled by setting source terms for each governing equation. This work proposes a new form of species source term by phase change, derived using the local instant formulation of two-phase flow.
The Stefan problem is used to verify the modified source term. Evaporation fluxes calculated with both modified and conventional sources are compared, demonstrating that the modified species source term yielded mass flow rates closer to theoretical values, with an error rate of less than 20%. The instabilities of source terms in the droplet case are also analyzed, revealing that surface tension and chemical reactions cause numerical errors arising from the sharp discontinuities at the interfacial cells.
The model’s validation includes a comparison with a benchmark case, assessing the temporal evolution of droplet diameter change and temperature fields. While the diameter change aligns reasonably with the benchmark, the temperature fields do not reach the benchmark’s flame temperature due to numerical diffusions. Furthermore, the molar fraction of aluminum gas at the interface closely matches experimental values, although the overall spatial distribution of molar fraction of species does not align with the benchmark.
|
7 |
Auto-Ignition of Liquid n-Paraffin Fuels Mixtures as Single Droplets Using Continuous ThermodynamicsSabourin, Shaun 09 August 2011 (has links)
This thesis reports a model to predict the auto-ignition time of single droplets of n-paraffin fuel mixtures using the method of continuous thermodynamics. The model uses experimental data for pure fuels to fit rate parameters for a single-step global chemical reaction equation; from this, correlations for rate parameters as a function of species molecular mass are derived, which are integrated to produce a continuous thermodynamics expression for mixture reaction rate. Experiments were carried out using the suspended droplet-moving furnace technique. The model was then tested and compared to experimental data for three continuous mixtures with known compositions: one ranging from ¬n-octane to n-hexadecane, the second ranging from n-dodecane to n-eicosane, and the third being a combination of the first two mixtures to produce a “dumbbell” mixture. Discrete and continuous mixture models of the ASTM standard distillation test were compared to design the experimental mixtures and provide the distribution parameters of the continuous mixtures intended to simulate them. The results of calculations were found to agree very well with measured ignition times for the mixtures.
|
8 |
Auto-Ignition of Liquid n-Paraffin Fuels Mixtures as Single Droplets Using Continuous ThermodynamicsSabourin, Shaun 09 August 2011 (has links)
This thesis reports a model to predict the auto-ignition time of single droplets of n-paraffin fuel mixtures using the method of continuous thermodynamics. The model uses experimental data for pure fuels to fit rate parameters for a single-step global chemical reaction equation; from this, correlations for rate parameters as a function of species molecular mass are derived, which are integrated to produce a continuous thermodynamics expression for mixture reaction rate. Experiments were carried out using the suspended droplet-moving furnace technique. The model was then tested and compared to experimental data for three continuous mixtures with known compositions: one ranging from ¬n-octane to n-hexadecane, the second ranging from n-dodecane to n-eicosane, and the third being a combination of the first two mixtures to produce a “dumbbell” mixture. Discrete and continuous mixture models of the ASTM standard distillation test were compared to design the experimental mixtures and provide the distribution parameters of the continuous mixtures intended to simulate them. The results of calculations were found to agree very well with measured ignition times for the mixtures.
|
9 |
Auto-Ignition of Liquid n-Paraffin Fuels Mixtures as Single Droplets Using Continuous ThermodynamicsSabourin, Shaun 09 August 2011 (has links)
This thesis reports a model to predict the auto-ignition time of single droplets of n-paraffin fuel mixtures using the method of continuous thermodynamics. The model uses experimental data for pure fuels to fit rate parameters for a single-step global chemical reaction equation; from this, correlations for rate parameters as a function of species molecular mass are derived, which are integrated to produce a continuous thermodynamics expression for mixture reaction rate. Experiments were carried out using the suspended droplet-moving furnace technique. The model was then tested and compared to experimental data for three continuous mixtures with known compositions: one ranging from ¬n-octane to n-hexadecane, the second ranging from n-dodecane to n-eicosane, and the third being a combination of the first two mixtures to produce a “dumbbell” mixture. Discrete and continuous mixture models of the ASTM standard distillation test were compared to design the experimental mixtures and provide the distribution parameters of the continuous mixtures intended to simulate them. The results of calculations were found to agree very well with measured ignition times for the mixtures.
|
10 |
Auto-Ignition of Liquid n-Paraffin Fuels Mixtures as Single Droplets Using Continuous ThermodynamicsSabourin, Shaun January 2011 (has links)
This thesis reports a model to predict the auto-ignition time of single droplets of n-paraffin fuel mixtures using the method of continuous thermodynamics. The model uses experimental data for pure fuels to fit rate parameters for a single-step global chemical reaction equation; from this, correlations for rate parameters as a function of species molecular mass are derived, which are integrated to produce a continuous thermodynamics expression for mixture reaction rate. Experiments were carried out using the suspended droplet-moving furnace technique. The model was then tested and compared to experimental data for three continuous mixtures with known compositions: one ranging from ¬n-octane to n-hexadecane, the second ranging from n-dodecane to n-eicosane, and the third being a combination of the first two mixtures to produce a “dumbbell” mixture. Discrete and continuous mixture models of the ASTM standard distillation test were compared to design the experimental mixtures and provide the distribution parameters of the continuous mixtures intended to simulate them. The results of calculations were found to agree very well with measured ignition times for the mixtures.
|
Page generated in 0.0732 seconds