• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1193
  • 206
  • 139
  • 134
  • 63
  • 37
  • 37
  • 37
  • 37
  • 37
  • 37
  • 19
  • 16
  • 16
  • 11
  • Tagged with
  • 2338
  • 891
  • 404
  • 396
  • 242
  • 226
  • 175
  • 170
  • 136
  • 131
  • 129
  • 126
  • 121
  • 108
  • 107
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

CHROMOSOME VARIATION IN DROSOPHILA SPECIES OF THE MULLERI COMPLEX.

SSEKIMPI, PUPULIO SSEMOMBWE NKUNA ABBY. January 1986 (has links)
Drosophila species in mulleri complex show five rod-shaped and one pair of dot-shaped chromosome. The sex-chromosomes represent the largest pair in the female, but are heteromorphic in the male, the Y-chromosome being shorter than the X-chromosome. The purpose of the research presented here is to determine whether chromosomes in the mulleri cluster species are longer than in the mojavensis cluster. The length of X-, Y-chromosomes and the rod-like autosomes were compared among the ten species studied. All the rod-like chromosomes were measured in 30 or more brain cells in each of the ten species. The length of the X-chromosomes were measured in hybrid female larvae. Also the metaphase chromosomes were stained for heterochromatin. The results of this study do not support the division of the mulleri complex into the two clusters. This study shows that the X-chromosome in mulleri complex can be divided into three categories; the long X-chromosome found in D.sp.A, D.aldrichi and D.wheeleri; the intermediate or medium X-chromosome found in D.mojavensis, D.mulleri, D.sp.S, and D.sp.S-5; and the short X-chromosome found in D.arizonensis, D.mayaguana, and D.sp.N. The intermediate and the short X-chromosome groups represent species from the two clusters. The Y-chromosome appears to be most variable of all. Based on overall chromosome lengths the ten species can be placed into three groups; (1) D.sp.A, D.aldrichi, D.wheeleri, D.sp.S, and D.sp.S-5 in the long chromosome group, (2) D.mojavensis and D.mulleri in the medium chromosome group and (3) D.arizonensis, D.sp.N and D.mayaguana in the short chromosome group. The differences in chromosome length seem to be due to heterochromatin. The results seem to suggest that the ancestral species had the mulleri-mojavensis chromosome length (i.e. medium) and the mulleri gene arrangement. The chromosomes of the species in the long chromosome group are a result of addition of heterochromatin. However the amount of heterochromatin gained varies from chromosome to chromosome within species and also from species to species among corresponding chromosomes. The sex chromosomes in the short chromosome group seem to have become shorter due to loss of heterochromatin while the autosomes generally remained unchanged. Heterochromatin seems to play a significant role in crosscompatibility among these species.
172

Life history strategies in fungal breeding Drosophila

Watson, A. P. January 1987 (has links)
No description available.
173

Spatial expression and function of the hairy protein in Drosophila melanogaster

Hooper, Katharine Louise January 1989 (has links)
No description available.
174

Molecular cloning of patched and analysis of its role in intrasegmental patterning in D. melanogaster

Hidalgo-Downing, Alicia January 1990 (has links)
No description available.
175

Drosophila lacking RNA editing

McGurk, Leeane January 2007 (has links)
ADAR is an adenosine deaminase that acts on dsRNA. Once bound to dsRNA, ADAR deaminates specific adenosines into inosines. If this occurs within the coding region of a transcript the inosine will be read as a guanosine. This can lead to a change in the amino acid at this position and increase protein diversity. In mammals there are three ADAR genes: ADAR1, ADAR2 and ADAR3. However, only ADAR1 and ADAR2 have been shown to be enzymatically active. ADAR1 is widely expressed and can edit both coding RNA and non-coding RNA. ADAR2 is restricted to the CNS and the key transcript that it edits encodes the GluR-B subunit of the glutamate-gated ion channel receptor. Editing of the Q/R site in the GluR-B transcript occurs with an efficiency of more than 99.9% and changes the genomically encoded glutamine into an arginine. This results in an ion channel that is impermeable to calcium. The ADAR2 knock-out mice are viable, but suffer from epileptic seizures and die by day 20. This phenotype can be rescued by expressing the edited R isoform of GluR-B, suggesting that this site is the most important target for ADAR2. Drosophila has only one Adar gene and its product has been reported to edit more than one hundred adenosines in different transcripts. Many of these transcripts encode subunits of ion channels, and it has been hypothesised that lack of ion channel editing causes the behavioural defects and age-related neurodegeneration observed in Adar deletion mutants. In this thesis I investigate the function of ADAR in an uncharacterised Adar mutant, Adar5G1. To characterise the Adar5G1mutant I not only used standard histology but a 3D imaging technique, optical projection tomography (OPT), that had not been reported to be used with Drosophila before this work. OPT allows the internal organs to be imaged without any manual sectioning or dissecting. I used OPT to identify neurodegenerative vacuoles from within the intact head and present the data both in 2D and in 3D. In addition to this, I demonstrate that this technique can be used to image global expression patterns in the Drosophila adult and I relate the TAU-β galactosidase expression pattern to the Drosophila anatomy. The neurodegeneration observed by OPT was confirmed by detailed analysis of stained wax sections. Complete loss of Adar, in the Adar5G1 mutant revealed age-dependent vacuolisation of the retina and mushroom body calyces. The vacuolisation observed in the Adar5G1 mutant was rescued by expression of Drosophila Adar and human ADAR1 p110, and ADAR2. However the cytoplasmic form of ADAR1, ADAR1 p150, did not rescue the vacuolisation of the Adar5G1 mutant. ADAR3, a catalytically inactive ADAR, rescued the vacuolisation phenotype of the Adar5G1 mutant, suggesting that ADAR may have an additional function independent of editing activity. The vacuolisation of the Adar5G1mutant was found not to be associated with type I programmed cell death. However, it was associated with swollen nerve fibres and degrading ommatidia containing multilamellar whorls. Neurodegeneration in various Drosophila mutant models and human neuropathies has been associated with similar cellular structures, suggesting that loss of ADAR results in neurodegeneration common to many of the known neuropathies. Finally, I found that expression of edited isoforms of the nicotinic receptor channel 34E subunit (Nic 34E) failed to rescue the locomotion phenotype of the Adar mutant. However, I found preliminary evidence that one of the lines generated for an edited isoform of Rdl, a subunit of the GABA receptor ion channel, gave a partial rescue of both locomotion and neurodegeneration of the Adar1F4 and Adar5G1 mutant.
176

p53-related protein kinase (PRPK) es necesario para la dinámica del citoesqueleto de actina y la migración de hemocitos, a través de su interacción con Rab35 e independiente del complejo KEOPS en Drosophila

Molina Reyes, Emiliano Matías January 2015 (has links)
Memoria para optar el título de Bioquímico / La migración celular es un proceso esencial en organismos pluricelulares, cobrando gran importancia durante la embriogénesis y en la respuesta inmune. Para migrar las células deben ser capaces de generar protrusiones fuera del margen celular. Los principales tipos de protrusiones generados por la polimerización de actina son lamelipodios y filopodios, siendo los primeros generados a través del complejo Arp2/3 (Actin related protein). Se ha reportado que la polimerización de actina es regulada por varias GTPasas pequeñas, entre ellas Rab35, la cual recluta a Rac1 y Cdc42 a sitios de formación de protrusiones modulando la formación de lamelipodios y filopodios, respectivamente. PRPK (p53 related protein kinase) es una quinasa atípica, altamente conservada perteneciente al complejo KEOPS (kinase, putative endopeptidase and other proteins of small size), el cual modula la eficiencia del reconocimiento de codones de tipo ANN. En Drosophila se ha visto que PRPK es necesario para la integración de las señales de la vía PI3K/TOR, las cuales se traducen en crecimiento celular y proliferación. Sin embargo, hemos visto que la pérdida de función de PRPK altera la forma celular en hemocitos-células inmunes homólogas a los macrófagos-, generando un fenotipo estrellado, similar a la pérdida de función del complejo Arp2/3. Este fenotipo es suprimido al co-expresar Rab35. También se ha reportado la interacción física entre PRPK y Rab35 en células humanas. Con estos antecedentes me propuse determinar si PRPK posee un rol fuera del complejo KEOPS, participando en la dinámica de protrusiones de membrana y el patrón de migración de hemocitos en Drosophila melanogaster. Para ello manipulamos los niveles de PRPK en tiempos y tejidos específicos a través del sistema Gal4/UAS. Se analizó la dinámica del citoesqueleto de actina y los parámetros de migración celular mediante microscopía confocal, en contextos particulares de migración y cultivo celular. Finalmente se realizaron co-inmunoprecipitaciones para determinar la interacción física entre PRPK-Kae1 (otro miembro del complejo KEOPS) y PRPK-Rab35. Los resultados obtenidos en esta tesis muestran que la pérdida de función de PRPK altera la dinámica del citoesqueleto de actina in vitro, el patrón de migración de hemocitos en estadios embrionarios, disminuye el reclutamiento de hemocitos en larvas en respuesta a un daño tisular y disminuye la velocidad de migración de hemocitos en estadío pupal. También se corroboró la interacción física entre PRPK y Rab35 y, aún cuando PRPK interactúa con Kae1, se concluyó que el rol de PRPK en la determinación de la forma celular se debe a un rol no canónico fuera del complejo KEOPS. Estos resultados sugieren que PRPK posee dos roles: Integración de señales de crecimiento y migración celular / Cell migration is an essential process in multicellular organisms, gaining great importance during embryogenesis and in the immune response. To migrate the cells must be able to generate protrusions outside the cell margin. The main types of actin protrusions are lamellipodia and filopodia, both generated by actin polymerization through the Arp2/3 (Actin related protein) complex. It has been reported that the activation of numerous small GTPases complex including Rab35, which recruits Rac1 and Cdc42 to the site of protrusions formation, where the latter are involved in the formation of lamellipodia and filopodia respectively. p53-related protein kinase (PRPK) is a highly conserved atypical kinase. It is a member of the KEOPS (kinase, putative endopeptidase and other proteins of small size) complex, which modulates the efficiency of recognition of ANN codons. In Drosophila PRPK is necessary for the translation of PI3K/TOR growth signals, which lastly support cell growth and proliferation. However, we observed that loss of function of PRPK alters cellular shape in haemocytes -macrophage-like cells-, generating a star-like phenotype which is also observed in loss of function of the Arp2/3 complex. The phenotype is suppressed by co-expressing Rab35. Also, it has been reported physical interaction between PRPK and Rab35 in human cells. With all this evidence I decided to determine if PRPK has a function independent of the KEOPS complex participating in the dynamics of membrane protrusions and migration pattern of haemocytes in Drosophila melanogaster. To do this, we manipulated PRPK levels in tissues and times specific through the Gal4 / UAS system. In particular contexts, migration and cell cultures, the actin cytoskeleton dynamics and cell migration's parameters were analyzed by confocal microscopy. Finally co-immunoprecipitations were performed to determine the physical interaction between PRPK-kae1 (another member of the complex KEOPS) and PRPK-Rab35. The results obtained in this study show that the loss of function of PRPK alters the dynamics of membrane protrusions in vitro and the migration pattern of embryonic haemocytes, reduces the recruitment of larval haemocytes in response to tissue damage and decreases haemocyte migration rate in pupal stage. We confirmed the physical interaction between PRPK and Rab35 and even when PRPK interacts with kae1, it was concluded that the role of PRPK in determining cell shape is due to a non-canonical role independent of the KEOPS complex. These results suggest that PRPK has two roles: Integration of growth signals and cell migration / Fondecyt
177

Defensive symbiosis in Drosophila: from multiple infections to mechanism of defense

Hamilton, Phineas T. 21 December 2015 (has links)
Multiple infections within the same host are now understood to be common and important determinants of the outcomes of disease processes. Multiple infections are particularly important in insects, which are often infected by vertically transmitted symbionts that are passed from the mother to her offspring. In many cases, these symbionts have evolved to confer high levels of protection against co-infecting parasites, pathogens, or other natural enemies. Despite widespread examples of symbiont-mediated defense, there are key outstanding questions in the ecology and evolution of defensive symbiosis. These include the mechanisms through which protection is conferred, the specificity of defensive effects against different parasites and pathogens, and the overall roles of defensive and other symbioses in host communities and ecosystems. To address these questions, I used a model of defensive symbiosis in which the bacterium Spiroplasma protects the woodland fly Drosophila neotestacea from the nematode parasite Howardula aoronymphium. First, I conducted a series of experiments that included transcriptome sequencing of \textit{D. neotestacea} infected by Howardula and Spiroplasma to uncover the mechanistic basis of defense in this symbiosis. Through these experiments, I found evidence of a putative protein toxin encoded by Spiroplasma that might contribute to defense. Following this, we characterized the protein as a novel member of a class of toxins known as ribosome-inactivating proteins (RIPs). RIPs are important virulence factors in bacteria such as enterohemorrhagic E. coli; I exploited recent approaches for quantifying RIP activity to design sensitive assays that demonstrate that Howardula suffers a high degree of ribosome cleavage specific to RIP attack during Spiroplasma-mediated defense. This is among the first demonstrations of a mechanism of defense against a specific enemy in an insect defensive symbiosis. I next worked with collaborators to culture and characterize a novel trypanosomatid parasite of Drosophila that I uncovered during the above transcriptome sequencing. Trypanosomatids are protist parasites that are common in insects, and the causes of important human diseases that include Chagas disease and African sleeping sickness. Despite Drosophila's history as an important model of infection and immunity, little is known of its trypanosomatid parasites, and we describe this parasite as a new genus and species: Jaenimonas drosophilae, the first trypanosomatid formally described from a Drosophila host. We conduct a series of experiments to understand infection dynamics, immune responses and interactions with other parasites and symbionts within the host, beginning to establish Drosophila-Jaenimonas infections as a tractable model of trypanosomatid infection in insects. Finally, though examples of ecologically important defensive symbioses accumulate, an understanding of their overall roles in ecosystems is lacking. I close with a synthesis of the ways in which symbioses - defensive or otherwise - can affect ecosystem structure and function through their effects on food webs. This work will help to develop a conceptual framework to link reductionist findings on specific symbioses to larger scale processes. / Graduate
178

An analysis of some gene effects on behaviour in Drosophila melanogaster

Zuill, Eldon E. January 1970 (has links)
No description available.
179

Dysregulation of mRNA Transport and Translation in ALS

Coyne, Alyssa N., Coyne, Alyssa N. January 2016 (has links)
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease affecting upper and lower motor neurons. Although many cellular processes such as cytoskeletal maintenance and synaptic function are disrupted in ALS, the molecular mechanisms by which these defects arise remain poorly understood. TDP-43, an RNA binding protein linked to the majority of ALS cases, is involved in multiple aspects of RNA metabolism. It is hypothesized that TDP-43 may sequester its mRNA targets into cytoplasmic stress granules during disease progression in turn, inhibiting their localization and/or translation. This work uses a Drosophila model of ALS based on TDP-43, to provide evidence for TDP-43’s role in translation regulation of specific mRNA targets. Using a combination of genetic, molecular, and imaging approaches this work has identified TDP-43 induced post-transcriptional alterations in futsch and hsc70-4 mRNAs. First, futsch/MAP1B is a TDP-43 mRNA target altered at the level of mRNA localization and translation. This results in microtubule instability at the NMJ as evidenced by an increased number of satellite boutons and decreased number of Futsch positive loops that are thought to indicate stable synaptic contacts. Furthermore, overexpression of Futsch mitigates defects in microtubule stability and TDP-43 dependent locomotor dysfunction and also increases lifespan. Second, this work shows that synaptic expression of Hsc70-4, a molecular chaperone critical for synaptic vesicle cycling is involved in multiple steps of the synaptic vesicle cycle, is reduced at the NMJ when TDP-43 is overexpressed in motor neurons. Using a combination of electrophysiology and FM1-43 dye uptake assays, this work shows that motor neuron expression of TDP-43 induces defects in synaptic vesicle endocytosis. Third, this work identifies Fragile X Protein (FMRP) as a neuroprotective protein partner of TDP-43. FMRP overexpression remodels RNP granules, extracts TDP-43 from insoluble complexes, and restores the translation of specific TDP-43 targets. Together, these data provides evidence for translation dysregulation underlying microtubule instability and synaptic dysfunction in ALS pathogenesis and identifies restoration of translation via remodeling RNP granules as a neuroprotective strategy to mitigate toxicity.
180

Analysis of synapse assembly in Drosophila melanogaster / Analyse des synaptischen Aufbaus der Drosophila melanogaster

Fouquet, Wernher January 2008 (has links) (PDF)
The majority of rapid cell-to-cell communication mechanisms and information processing within the nervous system makes use of chemical synapses. Fast neurotransmission on these sites not only requires very close apposition of pre- and postsynaptic partners, but also depends on an effective structural arrangement of cellular components on both sides of the synaptic cleft. Synaptic vesicles fuse at active zones (AZs), characterized by an electron-dense protein mesh of insufficiently characterized composition and function. EM analysis of synapses identified electron dense structures thought (but not proven) to play an important role for vesicle release efficacy. The molecular organization of presynaptic AZs during Ca2+ influx–triggered neurotransmitter release is currently a focus of intense investigation. Due to its appearance in electron micrographs, dense bodies at Drosophila synapses were named T-bars. Together with the lab of Erich Buchner, we recently showed that Bruchpilot (BRP) of the Drosophila melanogaster, homologous to the mammalian CAST/ERC family in its N-terminal half, is essential for the T-bar assembly at AZs and efficient neurotransmitter release respectively. The question, in which way BRP contributes to functional and structural organization of the AZ, was a major focus of this thesis. First, stimulated emission depletion microscopy (STED), featuring significantly increased optical resolution, was used to achieve first insights into ‘cytoarchitecture’ of the AZ compartment. In addition, in vivo live imaging experiments following identified populations of synapses over extended periods were preformed to address the trafficking of protein at forming synapses and thereby providing a temporal sequence for the AZ assembly process. Apart from BRP, two additional AZ proteins, DLiprin-α and DSyd-1, were included into the analysis, which were both shown to contribute to efficient AZ assembly. Drosophila Syd-1 (DSyd-1) and Drosophila Liprin-α (DLiprin-α) clusters initiated AZ assembly, finally forming discrete ‘quanta’ at the AZ edge. ELKS-related Bruchpilot, in contrast, accumulated late from diffuse pools in the AZ center, where it contributed to the electron dense specialization by adopting an extended conformation vertical to the AZ membrane. We show that DSyd-1 and DLiprin-α are important for efficient AZ formation. The results of this thesis describe AZ assembly as a sequential protracted process, with matured AZs characterized by sub-compartments and likely quantal building blocks. This step-wise, in parts reversible path leading to mature AZ structure and function offers new control possibilities in the development and plasticity of synaptic circuits. / Durch Ca2+ abhängige Neurotransmitterfreisetzung vermitteln chemische Synapsen die schnelle Informationsübertragung zwischen Nervenzellen. Vorausetzung hierfür sind gewisse zelluläre Eigenschaften, wie eine enge Korrelation zwischen der Prä- und Postsynapse und eine hoch spezialisierte Zusammensetzung von Proteinen. Synaptische Vesikel fusionieren mit der präsynaptischen aktiven Zone (AZ), welche sich aus einem dichten Netzwerk an vielfach noch unerforschter synaptischer Proteine zusammensetzt, das im Transmissionselektronenmikroskop elektronendicht erscheint. Des Weiteren sind ultrastrukturell elektronendichte präsynaptische Spezialisierungen erkennbar (dense bodies), die vermutlich (aber nicht nachweislich) bei der Freisetzung synaptischer Vesikel eine tragende Rolle spielen. Der molekulare Aufbau der AZ ist zurzeit ein weitverbreitetes Studienthema. Die Synapsen der Fruchtfliege Drosophila melanogaster sind präsynaptisch gekennzeichnet durch eine elektronendichte Struktur, welche aufgrund ihrer charakteristischen Form auch als „T-bar“ bezeichnet wird. Durch die Kooperation mit dem Labor von Erich Buchner gelang es uns, das synaptische Protein Bruchpilot (BRP) zu identifizieren. BRP weist im N-terminalen Bereich Homologien zu der in Säuger gefundenen CAST/ERC Proteinfamilie auf, und ist essenziell für die Ausbildung der elektronendichten T-bars an den AZs und für eine effiziente Ausschüttung von Neurotransmitter. In wie weit BRP für die funktionelle und strukturelle Organisation der AZ verantwortlich ist, sollte in der vorliegenden Arbeit erläutert werden. Durch die neu entdeckte „stimulated emission depletion“ Mikroskopie (STED), ist es nun möglich, dank der erhöhten optischen Auflösung, neue Einsichten in die Architektur der AZ zu erlangen. Zusätzlich wurden mit Hilfe von in vivo Experimenten an lebenden Tieren Populationen von Synapsen über längere Zeiträume verfolgt, um so die Synapsenentstehung und den Proteintransport zu untersuchen. Auf diesem Weg sollte eine Abfolge der an der AZ Assemblierung beteiligten Proteine erstellt werden. Neben BRP wurden daher noch zwei weitere AZ Proteine berücksichtigt (DLiprin-α und DSyd-1), welche ebenfalls bei der Bildung neuer synaptischer Kontakten mitwirken. Es konnte gezeigt werden, dass Proteincluster aus Drosophila Syd-1 (DSyd-1) und Drosophila Liprin-α (DLiprin-α) sehr früh während der Bildung neuer synaptischer Kontakte erscheinen und hierbei diskrete ‚Quanta‘ ausbilden, welche sich am Rand der AZ anlagerten. BRP hingegen erreichte die AZ zu einem späteren Zeitpunkt, wahrscheinlich aus diffusen Reservoirs und akkumulierte schließlich im Zentrum der AZ. Mit Hilfe der STED und konfokalen Mikroskopie konnte gezeigt werden, dass sich BRP in einer getreckten, vertikal zur Membran stehenden Orientierung in die elektronendichte Stuktur, den T-bar, einfügt. Zudem sind DSyd-1 und DLiprin-α für eine effiziente Entstehung neuer AZs erforderlich. Die in dieser Arbeit vorgestellten Ergebnisse deuten auf ein länger andauerden sequenziellen Assemblierungsprozess der AZ hin, in dem aus quantalen Baueinheiten Subkompartimente an ausgereiften AZs gebildet werden. Dieser gestaffelte, teils reversible Reifungsablauf der AZ eröffnet neue Möglichkeiten zur Kontrolle der Entwicklung und Plastizität neuronaler Netzwerke durch einen noch nicht beschriebenen Mechanismus.

Page generated in 0.0353 seconds