Spelling suggestions: "subject:"coequality groups anda pairs"" "subject:"coequality groups ando pairs""
1 |
Um estudo sobre certos invariantes homológicos relativos duaisGazon, Amanda Buosi [UNESP] 02 March 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:15Z (GMT). No. of bitstreams: 0
Previous issue date: 2012-03-02Bitstream added on 2014-06-13T19:33:40Z : No. of bitstreams: 1
gazon_ab_me_sjrp.pdf: 514461 bytes, checksum: a28c7f2428994893238d1ea3bcd3a9b1 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Baseado na teoria de cohomologia de grupos, Andrade e Fanti definiram um invariante algébrico, denotado por E(G;S;M), onde G é um grupo, S é uma família de subgrupos de G de índice finito e Mé um Z 2G-módulo. O objetivo deste trabalho é definir um invariante dual a E(G;S;M), que denotaremos por E (G;S;M), utilizando a homologia de grupos em vez da cohomologia. Com este invariante, obtemos diversos resultados e aplicações, principalmente nas teorias de grupos e pares de dualidade e de decomposição de grupos. Estes resultados fornecem uma maneira alternativa de obter aplicações e propriedades nestas teorias. E, para desenvolver este trabalho, estudamos as teorias de (co)homologia absoluta e relativa de grupos, bem como suas interpretações topológicas, e a teoria de grupos e pares de dualidade / Based on the cohomology theory of groups, Andrade and Fanti defined an algebraic invariant, denoted by E(G;S;M), where G is a group, S is a family of subgroups of G with nite index and M is a Z 2G-module. The purpose of this work is to define a dual invariant of E(G;S;M), which we denote by E (G;S;M), using the homology of groups instead of cohomology. With this invariant, we obtain many results and applications, especially in the duality and splitting theories of groups. These results provide an alternative way to get applications and properties in these theories. And to develop this work, we studied the absolute and relative (co)homology theories of groups, as well as their topological interpretations, and the theories of duality groups and pairs
|
2 |
Um estudo sobre certos invariantes homológicos relativos duais/Gazon, Amanda Buosi January 2012 (has links)
Orientador: Maria Gorete Carreira Andrade / Banca: Pedro Luiz Queiroz Pergher / Banca: Ermínia de Lourdes Campello Fanti / Resumo: Baseado na teoria de cohomologia de grupos, Andrade e Fanti definiram um invariante algébrico, denotado por E(G;S;M), onde G é um grupo, S é uma família de subgrupos de G de índice finito e Mé um Z 2G-módulo. O objetivo deste trabalho é definir um invariante dual a E(G;S;M), que denotaremos por E (G;S;M), utilizando a homologia de grupos em vez da cohomologia. Com este invariante, obtemos diversos resultados e aplicações, principalmente nas teorias de grupos e pares de dualidade e de decomposição de grupos. Estes resultados fornecem uma maneira alternativa de obter aplicações e propriedades nestas teorias. E, para desenvolver este trabalho, estudamos as teorias de (co)homologia absoluta e relativa de grupos, bem como suas interpretações topológicas, e a teoria de grupos e pares de dualidade / Abstract: Based on the cohomology theory of groups, Andrade and Fanti defined an algebraic invariant, denoted by E(G;S;M), where G is a group, S is a family of subgroups of G with nite index and M is a Z 2G-module. The purpose of this work is to define a dual invariant of E(G;S;M), which we denote by E (G;S;M), using the homology of groups instead of cohomology. With this invariant, we obtain many results and applications, especially in the duality and splitting theories of groups. These results provide an alternative way to get applications and properties in these theories. And to develop this work, we studied the absolute and relative (co)homology theories of groups, as well as their topological interpretations, and the theories of duality groups and pairs / Mestre
|
3 |
Decomposição de grupos de dualidade de Poincaré, obstruções sing e invariantes cohomológicos /Cavalcanti, Maria Paula dos Santos. January 2010 (has links)
Orientador: Ermínia de Lourdes Campello Fanti / Banca: Denise de Mattos / Banca: Maria Gorete Carreira Andrade / Resumo: O obejtivo principal deste trabalho é estudar as obstruções "sing" que desempenham papel importante nas demonstrações de certos resultados sobre decomposição de grupos que satisfazem certas hipóteses de dualidade apresentados em [16] e [17], em particular, sobre decomposição de um grupo G adapatada a uma família S de subgrupos de G com (G,S) um par de dualidade de Poincaré. Alguns invariantes cohomológicos e certos resultados envolvendo tais invariantes, decomposição de grupos e/ou grupos e pares de dualidade são também apresentados. / Abstract: The main objective of this work to study the obstructions "sing" which play an important role in demonstrating certain results on the splittings of groups that satisfy certain hypotheses of duality presented in [16] and [17], in particular, the decomposition of a group G adapted to a family S of subgroups of G with (G,S) a Poincaré duality pair. Some cohomological invariants and certain results involving such invariants, a splittings of groups and/or groups and pairs of duality are also presented. / Mestre
|
4 |
Decomposição de grupos de dualidade de Poincaré, obstruções sing e invariantes cohomológicosCavalcanti, Maria Paula dos Santos [UNESP] 26 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-02-26Bitstream added on 2014-06-13T20:16:04Z : No. of bitstreams: 1
cavalcanti_mps_me_sjrp.pdf: 612728 bytes, checksum: 47d18c69b5ae7b113879890007734ec5 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O obejtivo principal deste trabalho é estudar as obstruções sing que desempenham papel importante nas demonstrações de certos resultados sobre decomposição de grupos que satisfazem certas hipóteses de dualidade apresentados em [16] e [17], em particular, sobre decomposição de um grupo G adapatada a uma família S de subgrupos de G com (G,S) um par de dualidade de Poincaré. Alguns invariantes cohomológicos e certos resultados envolvendo tais invariantes, decomposição de grupos e/ou grupos e pares de dualidade são também apresentados. / The main objective of this work to study the obstructions sing which play an important role in demonstrating certain results on the splittings of groups that satisfy certain hypotheses of duality presented in [16] and [17], in particular, the decomposition of a group G adapted to a family S of subgroups of G with (G,S) a Poincaré duality pair. Some cohomological invariants and certain results involving such invariants, a splittings of groups and/or groups and pairs of duality are also presented.
|
Page generated in 0.0524 seconds