• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 83
  • 76
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 338
  • 256
  • 232
  • 139
  • 68
  • 53
  • 46
  • 37
  • 35
  • 35
  • 32
  • 28
  • 27
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Combinatorial Utrophin A Activation in Muscle as a Therapeutic Strategy to Treat Duchenne Muscular Dystrophy

Ahmed, Aatika January 2015 (has links)
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive neuromuscular disorder caused by mutations or deletions in the dystrophin gene. Utrophin up-regulation therapy is among the various therapeutic strategies that are being investigated to treat DMD. In this strategy utrophin, a dystrophin homologue, is up-regulated along the entire length of the sarcolemma to replace the absent dystrophin protein. Previous studies have revealed that utrophin A expression can be controlled by various transcriptional, post-transcriptional and translational mechanisms and pharmacological modulation of these pathways can stimulate its expression in muscle. In the present study we screened several FDA approved and natural pharmacological compounds that can potentially activate utrophin A expression in muscle. We found that AICAR (AMPK activator) and heparin (p38 activator) were most effective in stimulating utrophin A expression in our C2C12 muscle cell system. Next, we analyzed the effect of combining these activators on utrophin A expression in muscle cells and preclinical mdx mouse model of DMD. Our findings revealed that combinatorial treatment of AICAR and heparin instigated an additive effect on utrophin A expression both in C2C12 muscle cells and mdx mice. Further characterization of treated mdx mice revealed that combinatorial treatment of AICAR and heparin caused improvements in the dystrophic phenotype as indicated by decreased central nucleation, decreased fiber size variability and improved sarcolemmal integrity in dystrophic muscle. Together these findings established that combinatorial treatment of AICAR and heparin ameliorates the dystrophic phenotype in mdx mice and may serve as an effective therapeutic strategy for DMD.
52

Development of helper-dependent adenovirus for gene expression in muscle

Deol, Jatinderpal. January 2001 (has links)
No description available.
53

Exercise-induced mechanisms of muscle adaptation in mdx mice

Lekan, Jaimy Marie 12 October 2004 (has links)
No description available.
54

Implication de la voie RANK/RANKL/OPG dans la physiopathologie musculaire et potentiel thérapeutique de l'anti-RANKL pour la dystrophie musculaire de Duchenne

Hamoudi, Dounia 10 February 2024 (has links)
La dystrophie musculaire de Duchenne (DMD) est une maladie génétique neuromusculaire provoquée par des mutations du gène codant pour la dystrophine situé sur le chromosome Xp21. L'absence de cette protéine membranaire engendre une dégénérescence progressive des cellules, une augmentation de la concentration du calcium intracellulaire, des dommages oxydatifs, inflammatoires et ultimement une fibrose musculaire. Les patients souffrent également de plusieurs autres anomalies dont les plus importantes sont la cardiomyopathie et l'ostéoporose. Il n'y a actuellement aucune stratégie curative pour la DMD. Les corticostéroïdes sont prescrits pour prolonger la mobilité et l'espérance de vie, mais sont associés à une ostéotoxicité élevée. Bien qu'il existe une association entre l'ostéoporose et la dégénérescence musculaire, nous avons été les premiers à étudier le rôle du récepteur-activateur du facteur nucléaire kB (RANK), son ligand RANKL et du récepteur soluble ostéoprotégérine (OPG), principaux régulateurs du remodelage osseux, dans le contexte des maladies musculaires. Nos travaux antérieurs montrent que les myotubes différenciés secrètent l'OPG, expriment le récepteur RANK à leurs surfaces et dans le contexte de DMD l'expression de l'ARNm de RANK est 4 fois plus élevée dans les muscles de souris dystrophiques comparativement aux muscles sains. L'objectif de la présente thèse vise à exploiter cette voie afin de comprendre le mécanisme d'action de ces cytokines sur la physiopathologie musculaire et d'établir une stratégie thérapeutique pour la DMD en traitement unique ou combinée aux glucocorticoïdes. Dans un premier temps, nous avons investigué l'impact de la neutralisation systémique à long terme de RANKL sur l'intégrité et la fonction musculaire et osseuse dans un modèle sévère de dystrophie déficient en dystrophine/haploinsuffisant en utrophine. Ensuite, nous avons étudié les rôles physiopathologiques de l'OPG sur les tissus musculaires en caractérisant la fonction musculaire de souris déficientes en OPG. Finalement, nous avons débuté une étude sur l'effet de neutralisation systémique de RANKL sur l'ostéoporose associée à un traitement au deflazacort, un glucocorticoïde prescrit pour la DMD. Ainsi nous avons démontré que le traitement à long terme à l'anti-RANKL améliore la fonction et l'intégrité musculaire et osseuse chez les souris dystrophiques et protège contre l'ostéoporose induite par les glucocorticoïdes. À l'opposé, l'absence d'OPG induit, possiblement via RANKL, une faiblesse osseuse et musculaire et une atrophie sélective des fibres musculaires les plus puissantes. Ces avancées repoussent les connaissances au sujet de la voie RANK/RANKL/OPG au sein de la communication muscle-os et appuient l'anti-RANKL comme perspective thérapeutique chez les patients atteints de la DMD.
55

Étude du comportement des cellules humaines en présence de l'interleukine 13 humaine in vitro et in vivo dans le cadre de la thérapie cellulaire pour la dystrophie musculaire de Duchenne

Chakroun, Tasnim 17 April 2018 (has links)
La dystrophie musculaire de Duchenne est une maladie héréditaire qui touche les garçons. Une des approches envisagées pour rétablir l'expression de dystrophine dans le muscle est la thérapie cellulaire. Celle-ci connaît des limitations majeures comme le fort taux de mortalité et le faible potentiel migratoire des cellules transplantées. Dans l'optique de limiter ces obstacles, nous nous sommes intéressés à l'interleukine 13. En effet, il a été prouvé que l'interleukine 13 sécrétée par les fibres musculaires induit l'activation, la différenciation des cellules satellites en myoblastes et leur fusion avec les fibres pour induire l'hypertrophie musculaire. Par ailleurs, les effets de l'interleukine 13 sur les muscles squelettiques sont très peu connus. Résultats : L'étude in vitro des effets du traitement des myoblastes humains avec l'interleukine 13 humaine montre une augmentation du taux de fusion et une amélioration du potentiel migratoire via une action chémo-attractante. De plus, l'interleukine 13 permet d'améliorer la prolifération et la survie des myoblastes suite à l'induction d'un stress oxydatif. Par ailleurs, Le prétraitement et la co-injection de l'interleukine 13 ne montrent pas une amélioration concluante dans le taux de survie post-greffe. Aussi, l'électroporation d'un plasmide contenant le gène de l'interleukine 13 humaine dans les muscles de souris RAG avant la greffe ne semble pas augmenter le potentiel migratoire des cellules transplantées. Conclusions : Les effets de l'interleukine 13 sur les myoblastes observés in vitro semblent très prometteurs. Cependant, ces effets ne sont pas observables in vivo. D est nécessaire d'optimiser les méthodes d'introduction du gène dans les muscles de souris et les méthodes d'investigation pour avoir des résultats plus concluants.
56

Étude du profil immunogénique des fibres révertantes dans la dystrophie musculaire de Duchenne

Metlej, Racha 18 April 2018 (has links)
La dystrophie musculaire de Duchenne (DMD) est une maladie neuromusculaire récessive liée au chromosome X. Elle se manifeste par une dégénérescence musculaire progressive, menant finalement à la perte de la marche et à la mort. Elle est causée par une mutation au niveau du gène dmd codant pour une protéine, la dystrophine. Cette mutation altère le cadre de lecture normal du gène causant la perte de l’expression de la dystrophine, essentielle pour la protection des muscles contre la dégénérescence suite à l’effort. Par contre, la majorité des patients DMD ainsi que la souris mdx (modèle animal de la DMD), expriment de rares fibres musculaires révertantes qui expriment la dystrophine. Cette expression est due à une mutation somatique qui restore le cadre de lecture normal du gène et mène à la synthèse d’une dystrophine recombinante. Il a été suggéré que la dystrophine exprimée par les fibres révertante puisse induire une tolérance immunologique, conduisant à l’accumulation des fibres révertantes. Alternativement, ces rares fibres révertantes peuvent provoquer une réponse auto-immune qui limiterait les approches thérapeutiques visant à réexprimer la dystrophine. Dans mon étude, j’ai cherché à vérifier si la dystrophine néoformée provoque une réponse immunitaire dans la souris mdx. Tout d’abord, j’ai examiné, par immunohistochimie, les Tibialis antérieurs (TA) de souris mdx (souris dystrophiques) et Rag/mdx (dystrophiques et lymphopéniques) afin de comparer le nombre de fibres révertantes entre les souris immunocompétentes et les souris immunodéficientes. Cette étude permettait donc d’évaluer l’influence du système immunitaire sur la présence des fibres révertantes. Ensuite, j’ai tenté de vérifier, in vivo, la présence d’une réaction immunitaire cellulaire envers la dystrophine. Des splénocytes de souris mdx et 10J ont alors été transférés par injection intra-veineuse dans des souris Rag et Rag/mdx. Les muscles de ces dernières ont été examinés par marquage immunohistochimique afin de détecter la présence d’infiltration de cellules immunitaires autour des fibres révertantes. iii Enfin, pour étudier la réponse humorale, j’ai examiné les sérums de souris mdx par immunohistochimie et Western-Blot, afin de vérifier si des anticorps contre la dystrophine étaient présents. Mes travaux ont montré que les souris immunodéficientes avaient un nombre plus élevé de fibres dystrophine-positives, ce qui suggère que le système immunitaire est impliqué dans l’élimination des fibres révertantes chez les souris mdx immunocompétentes. En plus, la détection d’une infiltration de lymphocytes T dans les muscles de souris Rag/mdx, contenant des fibres révertantes, vient appuyer notre hypothèse. Cependant, le sérum de souris mdx ne contenait pas d’anticorps contre la dystrophine. Ces résultats suggèrent que les fibres révertantes n’induisent pas une tolérance immunitaire envers la dystrophine néoformée et qu’au contraire, elles induisent l’activation du système immunitaire. Cette activation se traduit par une réponse à médiation cellulaire et n’implique probablement pas une réponse à médiation humorale. / Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disease. It is characterized by progressive muscle degeneration, eventually leading to loss of ambulation and death. It is caused by a mutation in the dmd gene which encodes for the dystrophin protein. This mutation alters the normal reading frame of the gene causing the loss of dystrophin expression, essential for the protection of muscles from degeneration, following an effort. However, the majority of DMD patients and mdx mice (animal model of DMD) have rare revertant muscle fibers that express dystrophin. This expression is due to a somatic mutation, which restores of the normal reading frame of the gene and leads to the synthesis of a recombinant dystrophin. It was suggested that the dystrophine expressed by the revertant fibers could induce immunological tolerance, leading to the accumulation of revertant fibers. Alternatively, these rare revertant fibers could induce an autoimmune response that limits the success of therapeutical approaches to induce the expression of dystrophin. The aim of my study was to verify whether the newly formed dystrophin triggers an immune response in the mdx mouse. The Tibialis anterior (TA) muscle of mdx (dystrophic) and Rag/mdx (dystrophic, lymphopenic) mice were first examined by immunohistochemical staining to compare the number of revertant fibers present in immunocompetent and immunodeficient mice. This study allowed us to evaluate the influence of the immune system on the presence of revertant fibers. The presence of a potential cellular immune response against dystrophin was then investigated in vivo. Splenocytes from mdx and 10J mice were transferred intravenously into Rag and Rag/mdx. The muscules of these mice were examined by immunohistochemical staining to detect the presence of immune cellular infiltration around the revertant fibers. Finally, to study the humoral response, I examined sera from mdx mice using immunohistochemical staining and Western blotting to check for antibodies against dystrophin. My research showed that immunodeficient mice had a significantly higher number v of dystrophin-positive fibers, suggesting that the immune system is involved in the elimination of revertant fibers in immunocompetent mdx mice. In addition, T cells obtained from mdx mice and injected in Rag/mdx mice infiltrated muscles of Rag/mdx mice containing revertant fibers supporting the hypothesis that mdx mice do make a cellular immune response against the dystrophin revertant fibers. However, the mdx mouse serum did not contain any antibodies against dystrophin. These results suggest that revertant fibers do not induce an immune tolerance to the newly formed dystrophin, but on the contrary, they trigger the activation of the immune system. This activation results in a cell-mediated immunity but not a humoral immunity.
57

Étude des effets d'un propeptide muté de la myostatine sur la greffe de myoblastes : dans le cadre du développement d'un traitement pour la dystrophie musculaire de Duchenne

Lebel, Carl 16 April 2018 (has links)
La dystrophie musculaire de Duchenne (DMD) est la dystrophie musculaire la plus fréquente et la plus sévère. Reliée au chromosome X, cette maladie affecte 1 garçon sur 3500 dans le monde. Elle est causée par l'absence de dystrophine dans les fibres musculaires, entraînant une dégradation progressive du muscle. La transplantation de myoblastes est l'un des traitements possibles puisqu'elle permet de restaurer l'expression de la dystrophine dans les muscles des patients DMD. De plus, il a été observé que les animaux déficients en myostatine ont une masse musculaire plus élevée et sont plus forts que leurs congénères de type sauvage. Par conséquent, la signalisation induite par la myostatine est une cible de choix pour le développement de thérapie visant à rétablir la force des sujets dystrophiques. Il existe différentes avenues pour bloquer la signalisation de la myostatine, dont une, qui consiste en l'expression d'un propeptide muté de la myostatine. Cette molécule ayant la capacité de séquestrer la myostatine endogène. La greffe de myoblastes normaux combinée à un blocage de la myostatin pourraient s'avérer une bonne combinaison pour traiter le mieux possible les patients. Dans le premier article, nous étudions l'impact de la dystrophine sur les propriétés contractiles du muscle et la résistance aux contractions excentriques de muscles greffés ou non avec des myoblastes. Dans le second article, nous étudions l'effet d'un propeptide muté de la myostatine sur le succès de greffe de myoblastes et sur la force des souris greffées. Les résultats montrent cependant que le propeptide muté de la myostatin nuit à la greffe de myoblastes et au final diminue la force des muscles traités.
58

Développement d'un traitement thérapeutique pour la dystrophie musculaire de Duchenne à l'aide des protéines TALENs ou Cas9

Agudelo, Daniel 07 January 2025 (has links)
La dystrophie musculaire de Duchenne (DMD) est une maladie héréditaire liée au chromosome X. Elle est principalement causée par la délétion d’un ou plusieurs exons du gène DMD, ce qui entraine un changement du cadre de lecture et l’obtention d’une protéine dystrophine tronquée et inactive. L’édition de génome par les systèmes TALEN ou CRISPR/Cas9 est devenue dans les dernières années un grand espoir pour le développement de traitements pour ce type de maladie. Dans ce travail, nous illustrons la faisabilité d’un traitement pour la DMD en utilisant les protéines TALENs ou le complexe CRISPR/Cas9 purifiés. Ces protéines sont donc transduites afin de générer des cassures double brin dans l’ADN génomique. Ainsi, la correction de cette mutation par recombinaison non homologue pourra corriger le cadre de lecture du gène codant pour la protéine dystrophine, produisant ainsi une protéine tronquée, mais active, telle que pour les patients Becker. Bien que les protéines TALENs montrent une bonne activité in vitro, l’efficacité de coupure n’a pas pu être observée dans les cellules, ce qu’indiquerait un défaut lors de la transduction protéique. Toute fois, dans le cas du système CRISPR/Cas9, l’essai surveyor a permis d’observer les produits de coupure attendus lors de la transduction de ce système avec des lipides cationiques. Ceci indique donc que le système CRISPR/Cas9 peut être utilisé de façon efficace sous forme protéique tout en ciblant le gène DMD. Finalement, l’utilisation de ce système a été confirmée in vivo chez la souris hDMD, où il a été possible d’observer la présence des délétions ciblées. La transduction de protéines en utilisant le système CRISPR/Cas9 illustre donc une approche thérapeutique prometteuse dans le but de développer un traitement pour les maladies génétiques. / Duchenne muscular dystrophy (DMD) is an hereditary disease linked to chromosome X. It is mainly caused by the deletion of one or more exons of the DMD gene, which causes a change in the reading frame, obtaining a truncated and inactive protein. Genome editting by TALEN or CRISPR/cas9 systems has become in the recent years a powerfull tool for developing treatments for this type of disease. However, the use of plasmids encoding these systems leads to a prolonged expression, which may increase the off-target risk. Thus, it is important to note that today, viruses vectors remain the most effective delivery system for these plasmids, which always entails a risk of integration into the genome, increasing the probability of side effects for a treatment. In this work, we illustrate the development of a genome edditing treatment for DMD, but using purified protein TALENs or Cas9. These proteins are transduced in order to generate double strand breaks in the genomic DNA. Thus, the correction of this mutation by non-homologous end joining can correct the reading frame of the gene, producing a functional Dystrophin protein, as for Becker patients. Although TALEN proteins show a good activity in vitro, the cut-effectiveness has not been observed in the cells. It would indicate a defect in the protein transduction. However, in the case of CRISPR/cas9 system, we have obtained the expected cleavage products during the transduction with cationic lipids in both cell lines. These results are similar with those obteined when the plasmids coding for both systems were transfected. This indicates that the CRISPR/cas9 system can be used effectively in protein form while targeting a gene specifically. Protein therapy using the CRISPR/cas9 system can be a promising method in order to develop an alternative treatment for genetic diseases. Finally, in order to confirm that this system can be used in vivo, we will soon test it in the hDMD mouse model, containing the complete human DMD gene.
59

Vers une thérapie génique ex vivo de la dystrophie musculaire de Duchenne : approches lentivirale et intégrase PhiC31

Quenneville, Simon 13 April 2018 (has links)
La dystrophie musculaire de Duchenne est une maladie génétique liée au chromosome X qui atteint un garçon sur 3 500. Cette maladie est caractérisée par l'absence de dystrophine à la surface des fibres musculaires. Sans cette protéine, les fibres se brisent plus fréquemment et une faiblesse musculaire progressive apparait. Les patients décèdent généralement au début de la vingtaine. Il n'y a présentement aucun traitement pour cette pathologie. La greffe de cellules myogéniques est une thérapie possible, mais se heurte à un rejet par le système immunitaire du patient. Pour contourner ce problème, il est possible de développer une thérapie génique ex vivo, basée sur la greffe de cellules autologues modifiées génétiquement. Malheureusement, aucune technique efficace de modification génétique des cellules n'était disponible il y a quatre ans. Nous avons testé deux nouvelles techniques de modification génétique. Une première est non virale et la seconde utilise les lentivirus. La première consiste à transfecter un plasmide d'expression de la dystrophine par Nucléofection. Pour intégrer les séquences, un second plasmide, codant pour l'intégrase PhiC31, est aussi introduit dans les cellules. Cette technique nous a permis de stabiliser des plasmides allant de 7 kb à 21 kb, ce qui en fait les plus grosses séquences jamais stabilisées dans des cellules de culture primaire humaine. Cette expression a pu être détectée dans les fibres musculaires après une greffe. Nous avons aussi utilisé des lentivirus pour effectuer une modification génétique des cellules. Ce vecteur viral est très efficace pour introduire des cassettes d'expression pour des versions tronquées de la dystrophine. L'expression de cette dystrophine est détectable in vitro, mais aussi in vivo après la transplantation. De plus, une cassette servant à faire le saut d'exon thérapeutique a aussi été introduite dans des cellules myogéniques et a permis de faire exprimer une dystrophine presque complète par des cellules issues de patients DMD. Cette expression a aussi été détectée dans des modèles murins. Ces travaux constituent une preuve de principe de la faisabilité d'une thérapie génique ex vivo pour la DMD. Plusieurs améliorations restent à apporter, mais il semble que ces travaux laissent croire qu'un essai clinique sera réalisable. / Duchenne muscular dystrophy (DMD) is a severe X-linked muscle genetic illness that afflicts one boy per 3 500. Cell therapy is a possible cure for this illness that usually kills patients around age 25. Transplantation of the heterologus myogenic cells is, however, restricted by the immune rejection by the patient. Ex vivo gene therapy offers an evasion to this problem. Introduction of the therapeutic gene into the patient’s own myogenic precursor cells, followed by transplantation is the base of this therapeutic. Four years ago, no efficient procedure to stably modify myogenic cells was available. New gene introduction techniques were thus tested in the present thesis. The first one is a non-viral method. We used a new transfection technology (Nucleofection) to introduce plasmid DNA coding for dystrophin with success. To stabilize the expression, human myogenic cells were co-nucleofected with a PhiC31 expressing plasmid. This integrase was capable of stabilising expression plasmids ranging from 7 kb to 21 kb. This very large sequence was the largest plasmid ever stabilised into human primary cultured cells. The presence of full-length dystrophin protein was detected in vitro and confirmed in vivo, after the transplantation of the myogenic precursor. Another technique was used: the lentiviral vectors. These viral vectors were designed to deliver an expression cassette for a truncated version of the dystrophin gene. The viral vector was efficient at modifying the cells. The expression was shown in vitro and in vivo after the transplantation of the modified cells. The lentiviral vectors were also essayed to deliver a U7 exon skipping cassette into DMD cells. It was then possible to demonstrate that this introduction led to the expression of a quasi normal dystrophin protein in vitro. The expression was also shown in vivo after the transplantation into SCID mice model. A non-viral approach combining nucleofection and the PhiC31 integrase may eventually permit safe auto-transplantation of genetically modified cells. The utilisation of lentiviral vectors also provided evidences that an ex vivo gene therapy is possible for DMD. We believe these results are paving the way to an eventual clinical trial for ex vivo gene therapy.
60

Correction du gène de la dystrophine avec les nucléases à doigts de zinc

Iyombe, Jean-Paul 19 April 2018 (has links)
La thérapie génique sans transfert de gène utilisant les endonucléases de restriction spécifiques est une des approches thérapeutiques qui visent à la mise au point d’un traitement curatif de la dystrophie musculaire de Duchenne (DMD). Afin de corriger le gène de la dystrophine avec les nucléases à doigt de zinc (ZFNs) en ciblant l’exon 50, nous avons produit les protéines ZFNs dans les bactéries et les avons purifiées. Les résultats obtenus après les essais in vitro montrent que les ZFNs produites reconnaissent d’une manière spécifique la séquence cible située au niveau de l’exon 50 du gène DYS et peuvent y générer d’une manière précise les coupures double-brin. Ils montrent également que les protéines ZFNs produites peuvent être transfectées, avec ou sans agent de transfection, dans les myoblastes des patients dystrophiques Duchenne en culture. / Gene therapy without gene transfer using specific restriction endonucleases is a therapeutic approaches aimed at the development of a cure for Duchenne muscular dystrophy (DMD). To correct the dystrophin gene with zinc finger nucleases (ZFNs) targeting exon 50of DYS gene, we produced ZFNs proteins in bacteria and purified them. The results obtained after in vitro assays show that ZFNs produced specifically recognize a target sequence located in exon 50 of the gene DYS and can be generated in a precise manner the double strand breaks. They also show that ZFNs produced proteins can be transduced with or without agent transduction, in cultured myoblasts of patients’ Duchenne dystrophy.

Page generated in 0.0297 seconds