Spelling suggestions: "subject:"duckweeds"" "subject:"duckweed’s""
1 |
A study of endogenously produced factors affecting growth and flowering in three species of Lemna.Curtis, Henry Lee January 1970 (has links)
No description available.
|
2 |
Fate of fluorinated organic pollutants in aquatic plant systems studies with lemnaceae and lemnaceae tissue cultures /Reinhold, Dawn Marie. January 2007 (has links)
Thesis (Ph.D)--Civil and Environmental Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Saunders, F. Michael; Committee Member: Huang, Ching-Hua; Committee Member: Hughes, Joseph; Committee Member: Loeffler, Frank; Committee Member: Pullman, Gerald; Committee Member: Spain, Jim. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
3 |
Fate of fluorinated organic pollutants in aquatic plant systems: studies with lemnaceae and lemnaceae tissue culturesReinhold, Dawn Marie 24 October 2007 (has links)
Aquatic plants of the family Lemnaceae (e.g., duckweed) actively uptake, metabolize, and sequester pollutants in natural and engineered wetland systems. Numerous interrelated processes contribute to pollutant removal in wetlands; of these processes, interactions between organic pollutants and aquatic plants may be least understood. Research focused on (1) understanding parameters that affected uptake of fluorinated organic pollutants by Lemnaceae, (2) identifying plant processes involved in removal of wastewater-associated organic pollutants by Lemnaceae, and (3) assessing use of Lemnaceae callus cultures in understanding toxicity and metabolism of fluorinated organic pollutants by Lemnaceae. Through active plant uptake, Lemna minor rapidly removed 13 fluorinated phenols, with pseudo-first order rate constants of 0.20±0.04 d-1 to 0.84±0.07 d-1. Uptake rates depended on substituent type (i.e., trifluoromethyl- vs. fluoro-) and position, with slowest removal rates for di-ortho-substituted fluorophenols. Uptake rates decreased with increasing concentrations of fluorinated phenols; assessments of inhibition of plant oxygen production in conjugation with concentration studies indicated that concentration affected uptake rates even when Lemnaceae was not inhibited. Additionally, temperature dependencies of fluorinated phenol uptake by Lemnaceae were well represented by Arrhenius relationships; however, effects of temperature on plant activity were also observed in trends of uptake rates with temperature. Increasing uptake with decreasing concentration and increasing temperature, in addition to effects of plant inhibition, plant activity, and sorption on uptake, strongly emphasized the importance of plant metabolism in uptake of fluorinated phenols by Lemnaceae. Active plant uptake of wastewater-associated organic pollutants affected fate of fluoxetine, triclosan, and 2,4-dichlorophenoxyacetic acid, while passive plant removal processes contributed to fate of four of six wastewater derived organic pollutants. Consequently, plant-associated processes were important components of fate for over 50% of experimental wastewater-associated organic pollutants. Furthermore, assessments with Lemnaceae callus cultures indicated that callus cultures were generally more susceptible to inhibitory responses to fluorinated phenols than were Lemnaceae plants; however, metabolism of 3-trifluormethylphenol in Lemnaceae callus cultures and plants was similar, indicating that callus cultures may be valuable in plant metabolism studies. Research advances understanding of fate of organic pollutants in wetland systems, and thus has important implications for water quality, ecosystem health, and human health.
|
4 |
The effects of selected antibiotics on nitrogen uptake by Spirodela punctata /Jones, Cory M. Unknown Date (has links)
Thesis (M.S.)--Humboldt State University, 2010. / Includes bibliographical references (leaves 26-28). Also available via Humboldt Digital Scholar.
|
5 |
Experimental culture of duckweed (Lemnaceae) for treatment of domestic sewageWhitehead, Alan Joseph January 1987 (has links)
The culture of the floating aquatic plant, duckweed (Lemna minor), as an agent of domestic sewage treatment was studied in a clarification lagoon at Duncan, British Columbia, during the summer of 1986. Duckweed was grown in plastic fabric tanks (3700 L volume, 1.85 m deep, 2.25 m² water surface area) receiving 290 L of sewage per day or 12.8 d hydraulic retention time. Three treatments were tested: cropped duckweed, uncropped duckweed, and no duckweed. Water quality, plant growth and tissue composition were monitored on the basis of weekly sampling.
Removals of VSS, COD, total-N and total-P were greater in the presence than in the absence of duckweed. Unmeasured imports of N and P masked the effect of plant uptake on reducing nutrient concentrations in the tank effluents. Sustainable duckweed yields were possible at both cropping rates, despite a severe infestation of aphids. Dry matter yields of 2.0 g/m².d and 6.4 g/m².d were obtained at the 15%/week and 50%/week cropping rates, respectively. Duckweed contained 6.1 - 6.4% N and 1.1 - 1.4% P (dry wt.). Plant harvest removed 0.14 g N/m².d and 0.03 g P/m².d at the 15%./week and 0.31 g N/m².d and 0.07 g P/m².d at the 50%/week cropping rates. Cropping increased the fraction of total-N and total-P loading that could be removed via plant uptake.
Performance of the experimental treatments is analyzed in the light of concentration data, mass balances, and mass flux estimations. Possible sources of unmeasured N and P imports are discussed, and recommendations for future research are provided. The results suggest that duckweed may hold promise under certain conditions as a means of polishing sewage lagoon effluent. / Applied Science, Faculty of / Chemical and Biological Engineering, Department of / Graduate
|
6 |
Comparative studies on the modes of action of SC-0224 and glyphosateCooley, William Edward January 1985 (has links)
The biological actions of the herbicides SC-0224 (trimethylsulfonium carboxymethylaminomethylphosphonate) and glyphosate [N-(phosphonomethyl)glycine] (PMG) were compared. In each study trimethylsulfonium iodide (TMS-I) was included as a treatment because the trimethylsulfonium ion is a constituent of the SC-0224 molecular structure.
In inflated duckweed (Lemna gibba L.), both formulated and technical grade forms of SC-0224 were found to be much more phytotoxic to duckweed than either formulated or technical grade forms of glyphosate. The growth inhibition caused by glyphosate was partially prevented by different combinations of the aromatic amino acids phenylalanine, tyrosine, and tryptophan; whereas, the duckweed growth inhibition caused by SC-0224 could not be reduced by the same amino acid combinations. TMS-I and SC-0224 were found to be equally phytotoxic to duckweed. SC-0224 caused larger increases than glyphosate in the pool levels of amino acids; the increases caused by SC-0224 were similar, however, to those caused by trimethylsulfonium iodide. Expressed on a per gram fresh weight basis none of the chemical treatments caused significant changes in soluble protein or the incorporation of ¹⁴C-leucine into soluble protein. On a per flask basis (allowing for decreased growth in treated flasks), both herbicides and TMS-I caused significant decreases in soluble protein and ¹⁴C-leucine incorporation. SC-0224 and TMS-I caused larger decreases than glyphosate in both cases but the SC-0224 and TMS-I treatments were not significantly different. These data indicate that differences in the phytotoxicity of SC-0224 .and glyphosate may be due to the action of the trimethylsulfonium ion of the SC-0224 structure.
The effects of these herbicides on the conversion of shikimate to anthranilate in a cell-free extract of Klebsiella pneumoniae ATCC 25306 were also compared. SC-0224 and glyphosate equally inhibited the production of anthranilate indicating that SC-0224 has action similar to glyphosate on the shikimate pathway.
The effects of these herbicides on photosynthetic electron transport (the Hill reaction) was determined using isolated thylakoids from Alaska pea (Pisum sativum L.). The action of SC-0224 was compared with the action of glyphosate, TMS-I and diuron [3-(3,4-dichorophenyl)-1,1-dimethylurea]. SC-0224, glyphosate and TMS-I did not inhibit the Hill reaction at concentrations up to 10 mM; whereas, diuron caused an almost total inhibition at 0.10 mM. The results of this study indicate that SC-0224 is not an inhibitor of photosynthetic electron transport.
These studies indicate that both constituents of the SC-0224 structure, TMS and PMG, are phytotoxic and may act independently. / Ph. D.
|
7 |
Treatment of Timtek process water by co-composting and aqueous phytoremediationMangum, Lauren Heard, January 2009 (has links)
Thesis (M.S.)--Mississippi State University. Department of Forest Products. / Title from title screen. Includes bibliographical references.
|
8 |
Study on the locally available aquatic macrophytes as fish feed for rural aquaculture purposes in South AmericaVelásquez, Yorcelis Carmelina Cruz 19 May 2016 (has links)
Zur Sicherung der Fischbestände muss die Aquakultur ihren Beitrag zur Weltfischversorgung weiter steigern. Solange jedoch die Fischfutter Produktion stark von der Gewinnung von Fischmehl abhängig ist, bestehen für die Aquakultur natürliche Begrenzungen und die Gefahr der Überfischung der Fischbestände bleibt erhalten. Wenn das Wachstumspotenzial der Aquakultur ausgeschöpft werden soll, müssen beträchtliche Mengen von Nährstoffeinträgen in Form von vollständigen Aquakultur-Mischfuttermitteln auf einer nachhaltigen Basis verfügbar sein. Aufgrund des gestiegenen Preises von kommerziellem Fischfutter sind Kleinproduzenten nicht in der Lage dieses zu erwerben. Daher ist es notwendig, ihnen alternatives Fischfutter zur Verfügung zu stellen. Wasserpflanzen können eine bedeutende Nahrungsquelle für herbivore- und omnivore Fische sein. Dennoch ist die Nutzung dieser Pflanzen als Zusatz für Fischfutter durch eine Reihe antinutritiver Substanzen, welche das normale Fischwachstum negativ beeinträchtigen, begrenzt. Unterschiedliche Behandlungen der Pflanzen können den Anteil an antinutritiven Substanzen reduzieren. Das Ziel dieser Dissertation war es, das nutritive Potential von Wasserpflanzen zu bestimmen. Die Wirkung der Behandlungen wie Sonnentrocknung oder Fermentierung zu bewerten und den Effekt ihrer Nutzung als Fischfutter auf das Wachstum von kultivierten Fischen zu erfassen. Dazu wurden Rationen mit einem geringen Gehalt an Fischmehl (3%) und bis zu 25% der Wasserpflanzen an die Fischspezies P. brachypomus und O. niloticus verfüttert. Die Ergebnisse der Untersuchung zeigen dass, eine ausschließlich auf aquatischen Makrophyten basierende Fütterung nicht empfehlenswert ist. Indem sie jedoch mit anderen lokal verfügbaren Agrar-Nebenerzeugnissen oder sogar mit kommerziellen Futtermitteln kombiniert werden, könnten die Futterkosten erheblich reduziert werden und bäuerlichen Kleinbetrieben eine Möglichkeit zum Wettbewerb auf den lokalen Märkten eröffnen. / It is commonly known that aquaculture needs to increase further its net contribution to the total world fish supplies. However, at present almost all farming operations, based on the use of fish feed, are highly dependent on available fishery resources for the production of fish meal, becoming a reducing activity rather than an activity suppling fishery resources. If the aquaculture growth potential is to be maintained, then considerable quantities of nutrient inputs in the form of aquafeeds will have to be available on a sustainable basis. On a long-term the small producers will be unable to depend on commercial aquafeeds based traditionally on fish meal, due to its increased price. Small-scale farmers need an alternative fish feed wherever possible based on the use of non-food grade locally feed resources, which is available in rural areas, is low-cost and is suitable for the proper growth and maintenance of native fish. Aquatic plants are considered important nutritional sources for herbivorous-omnivorous fish. However, the use of plant-derived materials as fish feed ingredient is limited by the presence of wide variety of antinutrients that affect the normal fish growth negatively; so that plants should be processed to reduce the effects of these compounds. Considering these aspects, this study assessed the nutritional potential of aquatic plants available in rural Colombia treated by sun drying and by fermentation and the effect of their use as fish feed on the growth performance of common cultured tropical fish (Piaractus brachypomus and Oreochromis niloticus) fed low fishmeal diets (3%) and until 25% of aquatic plants. The results of this study showed that a feeding exclusively based on aquatic plants is not recommendable; but to combine them with other locally available by-products of agriculture or even with commercial diets might considerably reduce feeding cost and provide to the small-scale farmers the opportunity to compete in local markets.
|
Page generated in 0.0188 seconds