• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 441
  • 84
  • 60
  • 55
  • 47
  • 25
  • 15
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 8
  • Tagged with
  • 985
  • 85
  • 72
  • 64
  • 63
  • 50
  • 46
  • 45
  • 44
  • 42
  • 41
  • 40
  • 39
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Physically Modeling High-Redshift Ultraluminous Infrared Galaxies

Hayward, Christopher 02 January 2013 (has links)
We have used a combination of hydrodynamical simulations, dust radiative transfer, and an empirically based analytical model for galaxy number densities and merger rates in order to physically model the bright high-redshift submillimeter-selected galaxy (SMG) population. We report the results of three projects: In the first we study the dependence of a galaxy’s observed-frame submillimeter (submm) flux on its physical properties. One of our principal conclusions is that the submm flux scales significantly more weakly with star formation rate for starbursts than for quiescently star-forming galaxies. Consequently, we argue that the SMG population is not exclusively merger-induced starbursts but rather a mix of merger-induced starbursts, early-stage mergers where two quiescently star-forming disk galaxies are blended into one submm source ("galaxy-pair SMGs"), and isolated disk galaxies. In the second work we present testable predictions of this model by demonstrating how quiescently star-forming and starburst SMGs can be distinguished from integrated data alone. Starbursts tend to have higher luminosity, effective dust temperature, global star formation efficiency \((L_{IR}/M_{gas})\), and infrared excess \((L_{IR}/L_{FUV})\) and tend to lie significantly above the star formation rate-stellar mass relation defined by quiescently star-forming galaxies. These diagnostics can be used to observationally determine the relative contribution of quiescently star-forming and starburst galaxies to the SMG population. In the final work we present the SMG number density, cumulative number counts, and redshift distribution predicted by our model. We show that, contrary to previous claims, the observed SMG number counts do not provide evidence for a top-heavy initial mass function. We also show that starbursts and galaxy-pair SMGs both contribute significantly to the bright SMG counts, whereas isolated disks contribute significantly only at the faint end. / Astronomy
502

Bio Stabilization for Geopolymer Enhancement and Mine Tailings Dust Control

Chen, Rui January 2014 (has links)
The first part of the thesis investigates the enhancement of fly ash-based geopolymer with alkali pretreated sweet sorghum fiber. The unconfined compression, splitting tensile and flexural tests were conducted to investigate the mechanical properties of geopolymer composite. The results indicate that the inclusion of sweet sorghum fiber slightly decreases the unconfined compressive strength (UCS), however, the splitting tensile and flexural strengths as well as the post-peak toughness increase with the fiber content up to 2% and then decrease thereafter. A durability test program containing 10 wet/dry cycles was performed to evaluate the long-term performance of the geopolymer composite related to wet/dry cycling. The results indicate that both the UCS and the splitting tensile strength of the geopolymer composite progressively decrease with the number of wet/dry cycles. The second part of the thesis investigates the utilization of biopolymers to stabilize MT for dust control. First, a fall cone method was adopted to evaluate the Atterberg limits and undrained shear strength of MT stabilized with biopolymers. The results indicate that the inclusion of biopolymers increases both the liquid limit and the undriained shear strength of MT. Two new equations are proposed for predicting the undrained shear strength of MT based on liquid limit and water content, and liquidity index. Second, an experimental program including moisture retention, wind tunnel and surface strength tests was performed to evaluate the effectiveness of biopolymer stabilization for dust control. The results indicate that biopolymers are effective in enhancing the moisture retention capacity, improving the dust resistance, and increasing the surface strength of MT. Third, a durability test program containing 10 wet/dry cycles was applied to MT samples treated with biopolymer solutions of different concentrations. The results show that the dust resistance of MT samples progressively decreases with the number of wet/dry cycles. Finally, experimental and numerical studies on the unconfined compressive strength (UCS) of MT stabilized with biopolymer were carried out. It is found that inclusion of biopolymer into MT favors the increase of adhesion between MT particles and thus the increase of the UCS of MT.
503

Occupational air pollutants and non-malignant respiratory disorders especially in miners : thesis IX

Hedlund, Ulf January 2008 (has links)
Aim. To assess associations between occupational air pollution and respiratory health, especially in miners. Background. Indications of associations between occupational exposure or social economic status and respiratory health have been found in several population-based studies. However, there have been few longitudinal studies of the putative correlations, the effects of environmental and genetic factors have seldom been simultaneously studied, and studies of miners have generated conflicting results. Material and methods. Population-based Obstructive Lung Disease in Northern Sweden (OLIN) cohorts surveyed in 1986, 1992 and 1996, and two industry-based materials, were used in cross-sectional and longitudinal studies. Inflammatory markers were compared in sputa from miners after a vacation of at least four weeks, after repeated occupational exposures for at least three months, and controls. The mortality from silicosis was studied in 7729 miners with at least 1 year of exposure. Multivariate analyses were used to adjust for confounders. Results. Up to about 30-40% (etiologic fraction) of incident symptoms in persons both with and without a family history of asthma (FHA) could be explained by exposure to occupational air pollution. Low socio-economic status (SES) was associated with impaired respiratory health. Population attributable risks for most examined disorders were about 10%. Current and ex-miners had increased prevalence of recurrent wheeze, longstanding cough, physician-diagnosed chronic bronchitis, and a trend for increased sputum production. For physician-diagnosed chronic bronchitis a multiplicative interaction was found between exposure and smoking habits. Ex-miners that had been exposed for on average 13 years and whose exposure had ceased 16 years before the study had an increased prevalence of physician-diagnosed chronic bronchitis and chronic productive cough and a trend to increased use of asthma medicines. Miners exposed underground for 18 years, on average, to diesel exhaust (with 0.28 mg/m3 nitrogen dioxide and 27 μg/m3 elemental carbon on average, EC) and particles (3.2 mg/m3 inhalable dust on average) had signs of higher inflammatory activity in their airways, i.e. significantly higher frequencies of macrophages, neutrophils, and total cells compared with referents. The activity in miners was similar after a vacation of at least four weeks and after repeated exposures for three months. There were 58 deaths from silicosis (underlying and contributing cause of death) and a clear dose-response relationship. The data indicated an increased risk of severe silicosis after long-term exposure to 0.1 mg/m3 respirable quartz, the current maximum allowable concentration (MAC) in Sweden and many other countries. Conclusion. Occupational exposure to dust, gases, and fumes impaired respiratory health, accounting for up to 30-40% of some respiratory symptoms in the general population. Low socio-economic status was associated with impaired respiratory health. The complex profiles of dust and diesel exhaust substances found in mines may cause inflammatory reactions in their lungs and persistent respiratory symptoms in occupationally exposed miners. Long-term exposure to quartz at the present MAC level may cause severe silicosis.
504

Feasibility Study of Using Cement Kiln Dust as a Chemical Conditioner in the Treatment of Acidic Mine Effluent

Mackie, Allison Louise 23 July 2010 (has links)
Water contaminated due to mining activities is often acidic and can contain high concentrations of dissolved metals. Cement kiln dust (CKD) is a fine-grained, alkaline material that is generated as a by-product of cement production. Its high lime (CaO) content makes it attractive as a substitute for quicklime in the generation of slurries for the treatment of mine water. The first part of this study analyzed six CKD samples for several physical and chemical properties to determine their variability and to compare them to the characterization of a commercial quicklime sample. Neutralization and precipitation experiments using acidic mine water containing high concentrations of zinc and iron determined that all slaked CKD slurries performed comparably to the quicklime slurry in terms of precipitation of soluble metals. The results of this research show that CKD can be effectively used to neutralize mine water and precipitate and remove dissolved metals.
505

Solar Occultation Imaging of Dust in the Martian Atmosphere

Robski, Ryan 22 November 2012 (has links)
As part of the ExoMars space programme, the 2016 Trace Gas Orbiter mission was announced. The Martian Atmospheric Trace Molecule Occultation Spectrometer (MATMOS) was a proposed Fourier transform spectrometer and solar imager concept pair that would provide for trace gas detection and aerosol observation of the Martian atmosphere. Martian aerosols – namely CO2 crystals, water-ice crystals, and dust – have been observed during past missions; however, observations have failed to fully characterize their physical and optical properties. This thesis presents an analysis of the ability of the proposed imager to determine the pointing of the spacecraft independent of the spectrometer. Furthermore, proof of concept is presenting showing the ability to, in laboratory conditions, characterize the precision and stability of the imager. Finally, window regions in the transmittance spectrum of the Martian atmosphere are determined simulating the Martian atmosphere and viewing geometry.
506

The Role of Syk in Airway Hyperresponsiveness and Remodeling in House Dust Mite Induced Murine Models of Allergic Airways Inflammation

Salehi, Sepehr 27 November 2013 (has links)
Spleen tyrosine kinase (Syk) plays a critical role in regulation of immune and inflammatory responses. This thesis investigated the role of Syk in the development of the asthma phenotype in acute and chronic mouse models of allergic airways inflammation. Airway hyperresponsiveness (AHR) to methacholine and inflammation increased significantly in HDM-induced compared with the saline control mice. We demonstrated that in vivo inhibition of Syk by selective Syk inhibitors, and genetic deletion of Syk using conditional Syk knockout mice attenuated AHR despite of inflammatory cell influx in the lung. Histological analysis showed airway remodeling in the chronic model, which was attenuated to some degree by deletion of Syk. This study identified a role of Syk in airway hyperresponsiveness and remodeling without significantly affecting leukocyte recruitment in HDM model of airways disease. My results support the improvement of therapeutic strategies in asthma by targeting the Syk pathway.
507

Radiative Effects of Dust Aerosols, Natural Cirrus Clouds and Contrails: Broadband Optical Properties and Sensitivity Studies

Yi, Bingqi 16 December 2013 (has links)
This dissertation aims to study the broadband optical properties and radiative effects of dust aerosols and ice clouds. It covers three main topics: the uncertainty of dust optical properties and radiative effects from the dust particle shape and refractive index, the influence of ice particle surface roughening on the global cloud radiative effect, and the simulations of the global contrail radiative forcing. In the first part of this dissertation, the effects of dust non-spherical shape on radiative transfer simulations are investigated. We utilize a spectral database of the single-scattering properties of tri-axial ellipsoidal dust-like aerosols and determined a suitable dust shape model. The radiance and flux differences between the spherical and ellipsoidal models are quantified, and the non-spherical effect on the net flux and heating rate is obtained over the solar spectrum. The results indicate the particle shape effect is related to the dust optical depth and surface albedo. Under certain conditions, the dust particle shape effect contributes to 30% of the net flux at the top of the atmosphere. The second part discusses how the ice surface roughening can exert influence on the global cloud radiative effect. A new broadband parameterization for ice cloud bulk scattering properties is developed using severely roughened ice particles. The effect of ice particle surface roughness is derived through simulations with the Fu-Liou and RRTMG radiative transfer codes and the Community Atmospheric Model. The global averaged net cloud radiative effect due to surface roughness is around 1.46 Wm-2. Non-negligible increase in longwave cloud radiative effect is also found. The third part is about the simulation of global contrail radiative forcing and its sensitivity studies using both offline and online modeling frameworks. Global contrail distributions from the literature and Contrail Cirrus Prediction Tool are used. The 2006 global annual averaged contrail net radiative forcing from the offline model is estimated to be 11.3 mW m^(-2), with the regional contrail radiative forcing being more than ten times stronger. Sensitivity tests show that contrail effective size, contrail layer height, the model cloud overlap assumption, and contrail optical properties are among the most important factors.
508

The Role of Syk in Airway Hyperresponsiveness and Remodeling in House Dust Mite Induced Murine Models of Allergic Airways Inflammation

Salehi, Sepehr 27 November 2013 (has links)
Spleen tyrosine kinase (Syk) plays a critical role in regulation of immune and inflammatory responses. This thesis investigated the role of Syk in the development of the asthma phenotype in acute and chronic mouse models of allergic airways inflammation. Airway hyperresponsiveness (AHR) to methacholine and inflammation increased significantly in HDM-induced compared with the saline control mice. We demonstrated that in vivo inhibition of Syk by selective Syk inhibitors, and genetic deletion of Syk using conditional Syk knockout mice attenuated AHR despite of inflammatory cell influx in the lung. Histological analysis showed airway remodeling in the chronic model, which was attenuated to some degree by deletion of Syk. This study identified a role of Syk in airway hyperresponsiveness and remodeling without significantly affecting leukocyte recruitment in HDM model of airways disease. My results support the improvement of therapeutic strategies in asthma by targeting the Syk pathway.
509

The Terrestrial Biogeochemical Cycle of barium: A proposed study to examine barium flux in Mojave Desert dust

Kaur, Mehar 01 January 2013 (has links)
Barium is a relatively abundant element in the crustal environments, Ba quantities can range from anywhere between 200ppm to 900ppm. Most common forms of Ba-minerals found in the environment are barite (BaSO4), witherite (BaCO3) and hollandite (Ba2Mn8O16). Ba is a useful element; it is used in various industries as a component in drilling fluids, in medical research and in manufacturing of various substances such as glass, ceramics, printing paper etc. However high quantity of Ba can be potentially toxic for the human body and can impair plant growth. It is therefore, important to review the terrestrial biogeochemical cycle of Ba, which is less studied and less understood than the oceanic biogeochemical cycle of Ba. Additionally, terrestrial systems face a diverse climate and are not as stable as the oceanic systems. Due to this the terrestrial biogeochemical cycle of barium is continuously changing and is more dynamic than the oceanic cycle. By studying one part of the cycle, i.e. the interaction of Ba in the atmosphere with the geosphere in the Mojave desert, NV, I propose a study to test the hypothesis that occurrence of, Ba-mineral, barite, in desert soils is mainly driven by dust flux. The proposal includes methodology for dust collection, sample analysis using XRF, XRD and SEM.EDS techniques and potential budget and timeline. Evidence supporting this claim would suggest that dust transports such minerals, affects the soil chemistry of desert soils and the interaction of various terrestrial systems.
510

Modelling the spatial distribution, direct radiative forcing and impact of mineral dust on boundary layer dynamics

Alizadeh Choobari, Omid January 2013 (has links)
Mineral dust aerosols, the tiny soil particles in the atmosphere, play a key role in the atmospheric radiation budget through their radiative and cloud condensation nuclei effects. It is therefore important to evaluate the radiative forcing of mineral dust and subsequent changes in atmospheric dynamics. The Weather Research and Forecasting with Chemistry (WRF/Chem) regional model with the integrated dust modules and available observations have been used to investigate the three-dimensional distribution of mineral dust over Australia. Additionally, the WRF/Chem model was used to estimate the direct radiative forcing by mineral dust over Australia. Particular emphasize has been given to direct radiative feedback effect of mineral dust on boundary layer dynamics. Two dust emission schemes embedded within the WRF/Chem model have been utilized in this study: the dust transport (DUSTRAN) and the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) schemes. The refractive index of mineral dust depends on the mineralogy, size and composition of dust over a given region. The refractive index of mineral dust for shortwave radiation was considered to be wavelength independent and set based on previous mineralogical studies over North Africa and Australia. However, the refractive index of mineral dust for longwave radiation was considered to be wavelength dependent and to vary for 16 longwave spectral bands. Model results were compared with observations to validate the performance of the model, including satellite datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), as well as ground-based measurements obtained from air quality monitoring sites over Australia. The major results can be summarized as follows: (1) Lake Eyre Basin is the most important source of dust in Australia, with a peak activity identified to be during austral spring and summer, and dust emission within the basin is often associated with the passage of dry cold fronts; (2) Mineral dust from Lake Eyre Basin can be transported long distances to southeastern Australia in association with eastward propagating frontal systems, reaching as far as New Zealand and beyond, and to northern tropical Australia by postfrontal southerly winds, and subsequently towards northwestern Australia and the Indian Ocean by southeasterly trade winds; (3) Australian dust plumes are mainly transported in the lower atmosphere, although variation of boundary layer depth during the passage of cold frontal systems, as well as ascending motion at the leading edge of these systems and descending motion where postfrontal anticyclonic circulation is dominant contribute to the vertical extent of mineral dust aerosols; (4) the shortwave direct radiative effect of mineral dust results in cooling of the atmosphere from the surface to near the boundary layer top, but warming of the boundary layer top and lower free atmosphere; (5) changes in the vertical profile of temperature result in an overall decrease of wind speed in the lower boundary layer and an increase within the upper boundary layer and lower free atmosphere; (6) the longwave warming effect of mineral dust partly offsets its shortwave cooling effect at the surface. This compensation is significantly larger over and immediately downwind of dust source regions where coarse particles are more abundant, as they have stronger interaction with longwave radiation emitted from the Earth’s surface; (7) both shortwave and longwave radiative forcing by mineral dust was found to have a diurnal variation in response to changes in solar zenith angle and in the intensity of longwave radiation, respectively; (8) the absorptive nature of dust was shown to be associated with the shortwave heating of the atmosphere; (9) on the other hand, longwave cooling of the atmosphere was identified because absorption of longwave radiation by dust is less than its emission to the surface and top of the atmosphere (TOA).

Page generated in 0.048 seconds