• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

COMPUTATIONAL FLUID DYNAMICS (CFD) MODELING AND VALIDATION OF DUST CAPTURE BY A NOVEL FLOODED BED DUST SCRUBBER INCORPORATED INTO A LONGWALL SHEARER OPERATING IN A US COAL SEAM

Kumar, Ashish R. 01 January 2015 (has links)
Dust is a detrimental, but unavoidable, consequence of any mining process. It is particularly problematic in underground coal mining, where respirable coal dust poses the potential health risk of coal workers’ pneumoconiosis (CWP). Float dust, if not adequately diluted with rock dust, also creates the potential for a dust explosion initiated by a methane ignition. Furthermore, recently promulgated dust regulations for lowering a miner’s exposure to respirable coal dust will soon call for dramatic improvements in dust suppression and capture. Computational fluid dynamics (CFD) results are presented for a research project with the primary goal of applying a flooded-bed dust scrubber, with high capture and cleaning efficiencies, to a Joy 7LS longwall shearer operating in a 7-ft (2.1 m) coal seam. CFD software, Cradle is used to analyze and evaluate airflow patterns and dust concentrations, under various arrangements and conditions, around the active mining zone of the shearer for maximizing the capture efficiency of the scrubber.
2

THE REDESIGNED VORTECONE: A MAINTENANCE-FREE WET SCRUBBER DEVICE

Taylor, Allison 01 January 2019 (has links)
Dust creates health and safety issues in mining and there are several different ways to reduce the amount of respirable dust created. Dust particles also affect the operation and efficiency of mining equipment. One device currently used to reduce dust in a coal mine is a flooded-bed dust scrubber. These type of scrubbers are found on continuous miners and are designed to capture dust particles close to the cutting head. However, the fibrous screens on the flooded-bed dust scrubber clog easily reducing both production and the quality and quantity of air miners are exposed too. The flooded-bed dust scrubber was designed in the 1980s and has not seen any significant changes since. A Vortecone is a wet scrubber system designed to capture small particles in the air and can easily replace the flooded-bed dust scrubber system on a continuous miner. The Vortecone was initially developed to capture over-sprayed paint particles and due to the capture ability was converted over into the mining industry. The first design of the Vortecone had two outlets and a large pressure drop across the system. The Vortecone was redesigned to have one outlet in order to increase confinement time of particles and thus increase the capture abilities. Using CFD analysis and laboratory testing, the redesigned Vortecone has been proven to have a lower resistance than the original design as well as the currently used convention screens. The Vortecone also proved to have a high capture efficiency at high airflows. This maintenance-free wet scrubber device requires much less maintenance than a conventional screen and thus can be used continually without interrupting production. The Vortecone has been designed so it can easily be mounted onto a continuous miner in place of the currently used scrubbers.
3

Vibration Enhanced Flooded Bed Dust Scrubber with Liquid-Coated Mesh Screen

Uluer, Mahmud Esad 18 October 2023 (has links)
Respirable coal mine dust (RCMD) is one of the biggest occupational health hazards. Dusty mining environments can cause life-threatening respiratory health problems for coal miners known as black lung. Over the last 20 years, the flooded bed dust scrubber (FBS) has been employed as an integral component of dust control strategies for underground continuous mining operations. These units have been shown to be effective and robust in mining environments; however, several technical challenges and knowledge gaps limit their performance and efficiency. Despite the capability of the FBS, there are numerous technical challenges that limit its performance and efficiency. In particular, the static panel filter, instrumental in most scrubber designs, is fundamentally limited in collection efficiency and causes numerous operational challenges including rapid clogging. Furthermore, the current design of the filter panel is not capable of evenly wetting the entire surface area. This allows dust-laden air to pass through the filter media and decreases the cleaning capability of the FBS. In this research, both a lab-scale and a full-scale vibration-enhanced FBS with a liquid-coated filter panel were designed, manufactured, and tested. The results confirmed that a vibration-induced filter panel enhances dust collection performance and reduces mesh clogging. In addition, laboratory-scale mesh clogging tests showed that a hydrophilic mesh provided superior clogging mitigation and better performance. Typical results from bench-scale tests showed notable improvements in dust collection efficiencies by over 6% in wet condition and over 7% in dry condition while reducing mass accumulation in the filter by almost 10% in wet condition and over 40% in dry condition. The prototype testing was less conclusive, with deviations between the static mesh and vibrating mesh depending on the mesh density and operating conditions. Nevertheless, with the highest mesh density tested (30-layer), the vibrating mesh notably outperformed the static mesh with superior collection efficiency and reduced airflow loss. The system was further analyzed to investigate the size-by-size recovery of dust particles to various endpoints in the scrubber, under both vibrating and static conditions. Results show that while a majority of the particles are recovered into the demister sump, nearly a quarter of the dust mass is recovered upstream of the screen. In addition, the data confirm that vibration prompts notable improvements to collection efficiency, particularly in the finest size class (- 2.5 micron). / Doctor of Philosophy / Coal mine dust is an unintended and unavoidable consequence of coal extraction operations that poses significant health and safety risks. The inhalation of small, respirable dust particles can cause incurable lung diseases, including silicosis and coal workers' pneumoconiosis known as black lung. To minimize occupational hazards of underground coal mine dust, the Mine Safety and Health Administration (MSHA) periodically brings legislation to the industry. The recent respirable dust rule mandates reducing the maximum allowable respirable dust concentrations in the mine environment to below 1.5 mg/m3 at the working face and below 0.5 mg/m3 at intake entries. In order to comply with these regulations, modern mining techniques utilize several dust mitigation strategies, and the flooded-bed dust scrubber (FBS) is one such technology used extensively on continuous miners. The conventional static panel filter, instrumental in most scrubber designs, however, is fundamentally limited in collection efficiencies due to a high clogging rate and a tradeoff between mesh density and airflow rate. Moreover, poorly wetted areas allow dust-laden air to pass through the filter media. To overcome these deficiencies, a novel liquid-coated vibrating mesh panel is introduced in this research. A laboratory-scale dust scrubber unit and a full-scale unit with a vibration-enhanced mesh screen panel were manufactured and employed to investigate the efficacy of the concept as compared to that of a static mesh. A series of experimental design studies were employed to determine the effective vibrational parameters, scrubber operational parameters, and the impact of mesh variations on dust collection and clogging mitigation. Optimized results from this research were also evaluated against those of a static mesh to determine performance improvement while investigating the mechanisms controlling dust collection and particle department through the scrubber system. Results from the laboratory study show that vibrating mesh conditions, higher water flow rates, and a hydrophilic mesh screen panel led to an improvement in the cleaning efficiency of the scrubber system. Compared to a static-mesh to FBS, the vibrating-mesh FBS showed a significant reduction in pressure drop across the mesh screen indicating lower air loss through the test duration. Overall, the findings confirm that vibrating mesh conditions have the ability to improve filter clogging issues while maintaining high collection efficiencies which can lead to better and healthier working conditions and prolonged operational time with less frequent maintenance. This research supports further technological advancement in mine dust mitigation technologies.
4

Dust Control Examination using Computational Fluid Dynamics Modeling and Laboratory Testing of Vortecone and Impingement Screen Filters

Kumar, Ashish R. 01 January 2018 (has links)
Heavy industries, such as mining, generate dust in quantities that present an occupational health hazard. Prolonged exposure to the respirable dust has been found to result in many irreversible occupational ailments in thousands of miners. In underground mining applications, a variety of scrubbing systems are used to remove dust near the zones of generation. However, the wire-mesh type fibrous screens in the flooded-bed dust scrubbers used on continuous miners, are prone to clogging due to the accumulation of dust particles. This clogging results in a reduced capture efficiency and a higher exposure to the personnel. This research establishes the Vortecone, an inertial wet scrubber system, as a suitable alternative to the existing filters. The Vortecone accelerates its inlet fluids into a rapid circulatory motion into a vortex chamber, preferentially moving the heavier particles towards the impermeable surface to be trapped by the circulating water film. Vortecones are used on automobile painting lines and capture over-sprayed paint particles with cleaning efficacies exceeding 99 % while requiring only infrequent maintenance. The existing design of the Vortecone could also be altered to control the flow patterns. This dissertation presents detailed computational fluid dynamics (CFD) models to describe air flow patterns in the Vortecone in steady and transient states. Multi-phase spray models were generated to simulate injection of water into the Vortecone. The volume of fraction (VOF) approach was adopted to mimic the air-water interface. The Lagrangian particle tracking method was used to model particle capture on the interface described by the VOF. The CFD models indicate excellent cleaning efficacies, especially of larger particles. Laboratory experiments with optical measurements of aerosols in a reduced scale model of the Vortecone validate the computer models. These experiments which were performed on dust samples with particle sizes 0.3 μm and above, show that the Vortecone captures 90 % particles by mass exceeding about 5.20 and 3.20 μm at air flows of 0.28 m3/s (600 cfm) and 0.38 m3/s (800 cfm), respectively. The development of detailed large eddy simulations (LES) of air flow in the Vortecone provides a novel contribution to research by better resolving the flow patterns. An impactor-type, self-cleaning, non-clogging impingement screen system was designed as a substitute for conventional screens used in continuous miners. The screen could further be used as an efficient dust capturing mechanism with a demister in general mining applications. CFD models and laboratory experiments are presented to establish the cleaning efficacies of the system. Laboratory experiments to investigate the cleaning efficiency of a fibrous-type conventional screen is also discussed. The parameter, filter selection factor, is proposed to compare the performance of the three systems (Vortecone, fibrous screen, and impingement screen) under similar flows. The Vortecone has been found to be the most efficient dust-cleansing system, although it is the most power intensive fillter. The impingement screen shows a similar cleaning efficiency and a much higher availability compared to the conventional fibrous screen. Because of its minimal maintenance requirement, the impingement screen shows significant promise in dust-control applications in mining.

Page generated in 0.0568 seconds