• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Integrated Wind Erosion Modelling System with Emphasis on Dust Emission and Transport

Lu, Hua, Mathematics, UNSW January 2000 (has links)
In this thesis, an integrated wind erosion assessment and prediction system has been developed. This system couples a physically based dust emission scheme, a high resolution limited area weather prediction model, a dust transport model, and a high resolution GIS (Geographic Information System) database. A simple expression for particle threshold velocity has been derived by considering the force balance of a single particle resting on the surface. Theoretical analyses have been performed to confirm that the main mechanism for dust uplifting is sand saltation bombardment rather than direct aerodynamic entrainment. A new model for dust emission by saltation bombardment is proposed and validated against experimental data. Preliminary sensitivity tests for the new dust emission model have been carried out by examining the dependence of dust emission rate on a range of parameters. The transport of airborne dust is modelled by using the particle mean concentration equation. The time-dependent advection terms are discretized and solved numerically by a multi-dimensional wave-propagation slope-limiter scheme. Some computational features of the integrated model are discussed in terms of its coupling, module decomposition, data handling and efficiency. A systematic sub-grid treatment is designed to extract soil surface parameters from the GIS database for large scale modelling. The integrated system is applied to investigate the February 1996 dust storms over the Australia continent. The simulated wind erosion pattern and intensity are in good agreement with available meteorological records and satellite images. It reveals that the system can be used to identify areas and periods under wind erosion threat as well as the responsible environmental factors.
2

The dust emission coefficients and emission rates in construction site in Kaohsiung City

Hsieh, Tao-Fan 28 June 2012 (has links)
This study collected relevant data of construction sites between January 1990 and December 2011 to estimate the emission factors of various construction projects for Kaohsiung City using Jhang¡¦s equations. The emission factors of various construction projects are as follows: about 0.121 kg/m2/month for reinforced concrete construction, about 0.141 kg/m2/month for steel constructed buildings, 0.228 kg/m2/month for road (tunnel) works, 0.126 kg/m2/month for bridge works, 0.101 tons/ha/month for regional construction projects, and 0.223 kg/m2/month for others. Based on these emission factors, the total fugitive dust emissions for 2,011 construction projects is estimated to be about 22,087.98 tons, and the exposure of per unit area to the fugitive dust pollution is approximately 11.98 ton/km2/month. The total fugitive dust emissions of 2,011 construction projects is estimated about 10528.14 tons (based on Kaohsiung City construction information database). According to the Department of Land, Kaohsiung City Government, Kaohsiung city is 27.8 kilometers from south to north, 10.4 kilometers from west to east, and the administrative area is 153.6029 square kilometers. The exposure of per unit area to the fugitive dust pollution is about 5.71 ton/km2/months.
3

Simulating and quantifying land-surface biogeochemical, hydrological, and biogeophysical processes using the Community Land Model version 4

Shi, Mingjie 08 November 2013 (has links)
Carbon and nitrogen cycles, the energy cycle, and the hydrological cycle interact with each other; all are crucial to atmosphere–land studies. Carbon and nitrogen cycle from the atmosphere to vegetation communities and soil micro-organisms through their transformation in inorganic and organic pools. Ecosystem equilibrium, which is usually disturbed by extreme events (e.g., fires or drought), depends on the speeds of carbon and nitrogen uptake and decomposition. Terrestrial biogeochemistry models typically require hundreds to thousands of years for carbon and nitrogen in various pools to reach steady-state solutions, which are generally a function of soil temperature and soil water. Hydrological processes such as the root transpiration/water removal and the cold-region infiltration with the soil ice freeze/thaw status involved affect soil water content and soil temperature, and regulate carbon- and nitrogen-stock variations. Last but not least, mineral dust, a type of atmospheric aerosol, alters surface radiation/energy balance, and may act as cloud condensation nuclei to modify precipitation rates and eventually the hydrological cycle. Therefore, we were motivated to investigate these processes in different ecosystems. Specifically, this research aims to 1) to elucidate the carbon- and nitrogen-pool adjustment processes in different ecosystems, 2) to evaluate how the root transpiration process affects ecosystem carbon exchange patterns in Amazonia, 3) to analyze the influence of soil impermeability, which is affected by the landscape freeze/thaw status in cold regions, on hydrological cycles at high latitudes, and 4) to explore the effects of surface vegetation distribution and model resolution on surface dust emissions. The Community Land Model version 4 (CLM4) was used in this study. We did numerical experiments in three environments: forest and grassland ecosystems, river basins in cold regions, and the Arabian Peninsula. Our main scientific findings are: 1) the adjustment time of the biogeochemistry components in CLM4 is longer for boreal forests than for other ecosystems, 2) with more water is lifted from deep soil, Amazonia ecosystems start to take up carbon during dry seasons, 3) the timing of boreal spring runoff simulations is improved by reducing the impermeable area underneath the snowpack, and 4) model-simulated dust emissions increase with model resolution as a result of the heterogeneities of vegetation cover and wind speed. / text
4

MODELING THE INFRARED EMISSION FROM DUST IN ACTIVE GALACTIC NUCLEI

Nenkova, Maia M. 01 January 2003 (has links)
Active Galactic Nuclei (AGN) are compact regions in the centers of some galaxies. They emit significantly in the whole range of the electromagnetic spectrum and show variability at different timescales. Observational evidence suggests the presence of a dusty torus obscuring the central radiation source of AGN. According to the Unified Model the observed general properties of AGN emission can be understood on the basis of orientation of this torus toward an observer. Two main types of AGN are distinguished: Type 1, with detected emission from the inner torus cavity viewed pole-on, and Type 2, viewed through the obscuring torus. There are numerous attempts in the past decade to model the emission from the torus, considering a homogeneous distribution of dust. However, important problems in explaining the observations still remain unsolved: it is hard to suppress the 10 m emission feature of silicate dust for a pole-on view and at the same time produce an absorption feature for an edge-on viewed torus; despite the huge optical depths inferred from X-ray observations of Type 2 sources, the observed absorption feature is shallow. Unlike observations, models of homogeneous tori with large optical depths always produce deep absorption feature. While it is realized that dust contained in clumps would resolve these issues, modeling of a clumpy medium poses a serious computational challenge. We are the first to incorporate clumps in our model of a dusty torus and to successfully explain the infrared emission from AGN. We model two types of clouds: directly illuminated by the AGN and diffusely heated by other clouds. We calculate the emission of the first type as angle-averaged emission from a dusty slab. The second type of clouds is modeled as dusty spheres embedded in the radiation field of the directly heated clouds. The radiative transfer problem for a dusty slab and externally heated sphere is solved exactly with our code DUSTY. The overall emission of the torus is found by integration over the spatial distribution of clouds. We find a very good agreement of our model results with observations. Comparison with them can constrain the physical conditions in the AGN dusty tori.
5

Star Formation in the Perseus Molecular Cloud: A Detailed Look at Star-Forming Clumps with Herschel

Sadavoy, Sarah I. 02 August 2013 (has links)
This dissertation presents new Herschel observations at 70 micron, 160 micron, 250 micron, 350 micron, and 500 micron of the Perseus molecular cloud from the Herschel Gould Belt Survey. The Perseus molecular cloud is a nearby star-forming region consisting of seven main star-forming clumps. The Herschel observations are used to characterize and contrast the properties of these clumps, and to study their embedded core populations. First, we probed the exceptionally young clump, B1-E. Using complementary molecular line data, we demonstrate that B1-E is likely fragmenting into a first generation of dense cores in relative isolation. Such a core formation region has never been observed before. Second, we use complementary long wavelength observations at 850 micron to study the dust properties in the larger, more active B1 clump. We find that Herschel data alone cannot constrain well the dust properties of cold dust emission and that long wavelength observations are needed. Additionally, we find evidence of dust grain growth towards the dense cores in B1, where the dust emissivity index, beta, varies from the often assumed value of beta = 2. In the absence of long wavelength observations, however, assuming beta = 2 is preferable over measuring beta with the Herschel-only bands. Finally, we use the source extraction code, getsources, to identify the core populations within each clump from the Herschel data. In addition, we use complementary archival infrared observations to study their populations of young stellar objects (YSOs). We find that the more massive clumps have an excess of older stage YSOs, suggesting that these regions contracted first. Starless cores are typically associated with peaks in the column density, where those found towards regions of higher column density also have higher average densities and colder temperatures. Starless cores associated with a strong, local interstellar radiation field, however, have higher temperatures. We find that the clumps with the most prominent high column density tails also had the highest fractions of early-stage YSOs. This relation suggests that the quantity of high column density material corresponds to recent star formation activity. / Graduate / 0606
6

Alluvial Dust Sources and their Implementation in a Dust-Emission Model

Feuerstein, Stefanie Anna 07 February 2020 (has links)
Mineral dust has manifold impacts on the Earth system. This includes land degradation at the dust sources, interaction with radiation in the atmosphere and effects on human health and economic activity. While it can be stated that most dust sources are found in arid and semi-arid environments, a general determination of characteristics that make a surface particularly susceptible to wind erosion cannot be given. One dust source type that has gained increasing attention in recent years is alluvial sediments. These sediments are formed and influenced by surface runoff and provide a large amount of fine grained material prone to wind erosion. Alluvial features are abundant in desert regions but are often small in size, for example dry river basins or alluvial fans. Due to their small size and despite their importance, these features are often underestimated or completely disregarded in dust-emission models. In this thesis, the spatio-temporal distribution of active alluvial dust sources is investigated and parameterized for a dust-emission model. For this, an approach to automatically detect alluvial features from two globally available satellite products is developed. These products comprise (1) surface reflectance at visible and near-infrared wavelengths derived from Sentinel-2 or MODIS and (2) HydroSHEDS flow accumulation data based on radar measurements. By combining these two datasets, an alluvial fines map (AFM) is created that shows the distribution of alluvial sediments. The AFM is implemented in a dust-emission model and multi-year model runs are performed for two study regions, one located around the Aïr Massif in the central Sahara, the other one covering western Namibia. Besides the distribution of fine alluvial sediments, another hydrologically influenced source type is analyzed in Namibia, i.e. the Etosha pan, a salt pan that is one of the most important dust sources in southern Africa. Dust activity from Etosha pan exhibits a strong seasonality due to regular flooding of the pan. These inundation events are implemented in the model by creating a monthly water mask from MODIS reflectance data. In the central Saharan study area, a comparison of the simulated dust flux with observed dust source activation frequency (DSAF) derived from the MSG SEVIRI Desert-Dust-RGB product shows that the model is able to reproduce the spatial and seasonal differences in the main activity of the identified sources. This seasonality cannot be reproduced by a control model run, in which the sediment supply by alluvial features is not included explicitly. For the Namibian study area, a model run is performed that includes the monthly water mask for Etosha pan and the AFM for the coastal ephemeral river basins. The simulated period covers 13 years from 2005 to 2017. With an empirical orthogonal function (EOF) analysis, constellations of pressure systems in the southern African region are determined that lead to an increased dust flux from the study area. Especially the Berg wind situation, a unique pressure pattern found in southern Africa with dry and hot continental winds, is identified as an atmospheric circulation pattern that leads to increased dust activity from the Namibian sources. The results highlight how important the consideration of alluvial features is for an accurate simulation of dust fluxes. Due to the global availability of the satellite data, the approach can be implemented in regional, continental or even global studies. Long-term emission fluxes can be used to identify the influence of meteorological patterns on dust emission and can help to estimate dust fluxes under current conditions but also in a changing climate.
7

Core Microbiome to Fingerprint Dust Emission Sources Across the Western United States of America

Leifi, DeTiare Lisa 14 December 2022 (has links)
Over the past century, dust emissions have increased in frequency and intensity due to anthropogenic influences and extended droughts. Dust transports microbes, nutrients, heavy metals and other materials that may then change the biogeochemistry of the receiving environments. The purpose of this study was to find whether unique bacterial communities may provide distinct fingerprints of dust sources in the Western USA. We collaborated with the National Wind Erosion Research Network (NWERN) to identify bacterial core communities (core) of dust from ten NWERN sites, and compared communities to location, soil, and regional characteristics. In order of importance, precipitation levels (F = 43, P = 0.0001, Df = 2, r2 = 0.25), location (F = 16, P = 0.0001, Df = 5, r2 = 0.23), soil texture (F = 14, P = 0.0001, Df = 3, r2 =0.12), seasonality (F = 11, P = 0.0001, Df = 2, r2 = 0.064), and elevation (F = 5.7, P = 0.0002, r2 = 0.033) determined bacterial community composition. Bacterial core communities were defined as taxa present in at least 50% of samples at each site and offered predictable patterns of dust communities in terms of abundant (> 1% relative abundance) and rare (< 1% relative abundance) signatures. We found distinct bacterial core communities that reflected dust source systems, for example, sites contaminated with heavy metals contained Romboutsia, Turicibacter, Clostridium sensu stricto 1, Geodermatophilus, and Microvirga. Sites with association to plants and biocrusts contained Methylobacterium-Methylorubrum, Bradyrhizobium, Paenibacillus thermoaerophilus, Cohnella, and bacterial families Solirubrobacteraceae, Sphingobacteraceae, and Myxococcaceae. The presence of Sphingomonas, Stenotrophomonas, Rhodococcus, and Phenylobacterium were found in hydrocarbon contaminated soils. High stress (UV radiation and desiccation) sites contained Deinococcus, Blastococcus, and Modestobacter. We found that seasonal changes affected microbial community composition in five NWERN sites (CPER, HAFB, Jornada, Red Hills, and Twin Valley) (p < 0.05), while no seasonal effects on bacterial distribution were observed at Moab. Our results identify that the use of core microbiomes may offer a fingerprinting method to identify dust source regions.
8

Lighting the dark molecular gas and a Bok globule

Aditya, Togi Ganesha January 2016 (has links)
No description available.
9

Modelling of Dust Emissions from Agricultural Sources in Europe

Faust, Matthias 07 February 2024 (has links)
Dust aerosol emission is a critical topic in agriculture, occurring either by aeolian process from bare or sparsely vegetated cropland or as fugitive emission during tilling, harvest and many other farming activities. Aerosols, which are in the case of agriculture either mineral dust, organic particles or a mixture, are known for impacting human health, cloud formation and ultimately, the earth’s climate and ecosystem. Coupled atmosphere and aerosol transport models are commonly used to study aerosol dispersion in the atmosphere, but so far, agricultural sources are under-represented. Hence, estimations of these emissions’ actual impact are still somewhat uncertain regarding their seasonality, spatial distribution and the fraction of the global aerosol load. To fill this gap, this study aims at identifying suitable approaches for modelling aeolian emissions from sparsely vegetated cropland and fugitive emissions from tilling. Fugitive emissions are challenging since they mainly depend on human activity that is not predictable, but observed events can be used as case studies. For this, a Lagrangian particle dispersion model was chosen, which can trace the trajectory of individual particles in the emitted dust plume. So the particle model “Itpas” was developed to tackle fugitive emissions and to be capable of simulating the complex turbulent mixing of dust particles inside the atmospheric boundary layer. This model was used to simulate a case study based on measured tilling emissions, showing the particle dispersion for a stable and unstable stratified boundary layer. It was shown that within a stably stratified boundary layer, the dust plume is restricted to the near-source region. In contrast, emissions in unstable boundary layers go into long-range transport. This illustrates the spatial range a single tillage operation can have an impact. Aeolian dust emissions are controlled by the wind. For cropland, the emission variability is caused mainly by the frequently changing vegetation cover. Emissions can only occur in the time between tillage and newly grown crops or during drought periods. A parametrisation based on high-resolution satellite observations of the vegetation cover was created to include this process into a model. With this, a new dust emission scheme for cropland emission was developed for the model system COSMO-MUSCAT. In a case study of a dust outbreak from cropland in Poland in 2019, the model’s ability was tested extensively on multiple spatial resolutions. Validation against satellite-measured AOD, ground-measured PM10 and the vertical profile of the PollyNET lidar in Warsaw showed an overall good agreement of the model simulation with the observations. In the framework of this thesis, one dedicated model approach was developed for both the fugitive emissions and the aeolian emissions and validated upon case studies. These approaches could help better understand agricultural dust emissions, their spatial distribution, seasonality and, ultimately, global impact.

Page generated in 0.0907 seconds