• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanical Assessment of Veterinary Orthopedic Implant Technologies: Comparative Studies of Canine Fracture Fixation and Equine Arthrodesis Devices and Techniques

Baker, Sean Travis 03 October 2013 (has links)
The Clamp-Rod Internal Fixator (CRIF) is a fracture fixation implant with growing popularity among veterinarian’s for its versatility and ease of use. Although the CRIF is currently in clinical use, relatively few reports exist describing the biomechanical properties and clinical results of this system. The objective of this study was to determine the in vitro biomechanical properties of a 5mm CRIF/rod construct to a 3.5mm Limited Contact-Dynamic Compression Plate (LC-DCP/rod) construct using a canine femoral gap model. Paired canine femora were treated with 40mm mid-diaphyseal ostectomies and randomly assigned to CRIF/rod or LC-DCP/rod. Five pairs of constructs were tested in bending and five pairs were evaluated in torsion. Single ramp to failure tests were conducted to evaluate construct stiffness, yield load, and failure mode. While CRIF/rod and LC-DCP/rod were not significantly different when evaluated in bending, LC-DCP/rod constructs are significantly more rigid than CRIF/rod constructs at higher torsional loads. Below 10degrees of twist, or 4.92Nm torque, the LC-DCP/rod and CRIF/rod were not statistically different in torsion. Catastrophic injuries of the metacarpophalangeal joint resulting in the disruption of the suspensory apparatus are the most common fatal injuries in thoroughbred racehorses. Fetlock arthrodesis is a procedure designed to mitigate suffering from injury as well as degenerative diseases affecting articulation. The objective of this study is to assess the in vitro biomechanical behavior of techniques for fetlock arthrodesis. Twelve forelimb pairs were collected from adult horses euthanized for reasons unrelated to disease of the metacarpophalangeal joint (MCP). A 14-16-hole broad 4.5mm Locking Compression Plate (LCP) was compared to a 14-16 hole broad Dynamic Compression Plate (DCP). Both constructs used a two “figure-eight” 1.25mm stainless steel wire tension band. Fatigue tests and to failure tests were conducted. There were no significant differences in stiffness between groups for fatigue tests. Stiffness increased after the first fatigue cycle for the LCP/wire (80.56+/-52.22%) and DCP/wire (56.58+/-14.85%). Above 3.5mm of axial deformation there was a statistical difference between the stiffness of the LCP/wire (3824.12+/-751.84 N/mm) and the DCP/wire (3009.65+/-718.25 N/mm) (P=0.038). The LCP/wire showed increased stiffness above 3.5mm compression compared to the DCP/wire. Under fatigue testing conditions the constructs are not statistically different.
2

Fabrication of a New Model Hybrid Material and Comparative Studies of its Mechanical Properties

Cluff, Daniel Robert Andrew January 2007 (has links)
A novel aluminum foam-polymer hybrid material was developed by filling a 10 pore per inch (0.39 pores per millimeter), 7 % relative density Duocel® open-cell aluminum foam with a thermoplastic polymer of trade name Elvax®. The hybrid was developed to be completely recyclable and easy to process. The foam was solution treated, air quenched and then aged for various times at 180˚C and 220˚C to assess the effect of heat treatment on the mechanical properties of the foam and to choose the appropriate aging condition for the hybrid fabrication. An increase in yield strength, plateau height and energy absorbed was observed in peak-aged aluminum foam in comparison with underaged aluminum foam. Following this result, aluminum foam was utilized either at the peak-aged condition of 4 hrs at 220˚C or in the as-fabricated condition to fabricate the hybrid material. Mechanical properties of the aluminum foam-polymer hybrid and the parent materials were assed through uniaxial compression testing at static ( de/dt = 0.008s-1 ) and dynamic ( de/dt = 100s-1 ) loading rates. The damping characteristics of aluminum foam-polymer hybrid and aluminum foam were also obtained by compression-compression cyclic testing at 5 Hz. No benefit to the mechanical properties of aluminum foam or the aluminum foam-polymer hybrid was obtained by artificial aging to peakaged condition compared to as-fabricated foam. Although energy absorption efficiency is not enhanced by hybid fabrication, the aluminum foam-polymer hybrid displayed enhanced yield stress, densification stress and total energy absorbed over the parent materials. The higher densification stress was indicative that the hybrid was a better energy absorbing material at higher stress than the aluminum foam. The aluminum foam was found to be strain rate independent unlike the hybrid where the visco-elasticity of the polymer component contributed to its strain rate dependence. The damping properties of both aluminum foam and the aluminum foam-polymer hybrid materials were found to be amplitude dependant with the hybrid material displaying superior damping capability.
3

Fabrication of a New Model Hybrid Material and Comparative Studies of its Mechanical Properties

Cluff, Daniel Robert Andrew January 2007 (has links)
A novel aluminum foam-polymer hybrid material was developed by filling a 10 pore per inch (0.39 pores per millimeter), 7 % relative density Duocel® open-cell aluminum foam with a thermoplastic polymer of trade name Elvax®. The hybrid was developed to be completely recyclable and easy to process. The foam was solution treated, air quenched and then aged for various times at 180˚C and 220˚C to assess the effect of heat treatment on the mechanical properties of the foam and to choose the appropriate aging condition for the hybrid fabrication. An increase in yield strength, plateau height and energy absorbed was observed in peak-aged aluminum foam in comparison with underaged aluminum foam. Following this result, aluminum foam was utilized either at the peak-aged condition of 4 hrs at 220˚C or in the as-fabricated condition to fabricate the hybrid material. Mechanical properties of the aluminum foam-polymer hybrid and the parent materials were assed through uniaxial compression testing at static ( de/dt = 0.008s-1 ) and dynamic ( de/dt = 100s-1 ) loading rates. The damping characteristics of aluminum foam-polymer hybrid and aluminum foam were also obtained by compression-compression cyclic testing at 5 Hz. No benefit to the mechanical properties of aluminum foam or the aluminum foam-polymer hybrid was obtained by artificial aging to peakaged condition compared to as-fabricated foam. Although energy absorption efficiency is not enhanced by hybid fabrication, the aluminum foam-polymer hybrid displayed enhanced yield stress, densification stress and total energy absorbed over the parent materials. The higher densification stress was indicative that the hybrid was a better energy absorbing material at higher stress than the aluminum foam. The aluminum foam was found to be strain rate independent unlike the hybrid where the visco-elasticity of the polymer component contributed to its strain rate dependence. The damping properties of both aluminum foam and the aluminum foam-polymer hybrid materials were found to be amplitude dependant with the hybrid material displaying superior damping capability.
4

On structural studies of high-density potassium and sodium

McBride, Emma Elizabeth January 2014 (has links)
The alkali elements at ambient conditions are well described by the nearly-free electron (NFE) model, yet show a remarkable departure from this “simple” behaviour with increasing pressure. Low-symmetry complex structures are observed in all, and anomalous melting has been observed in lithium (Li), sodium (Na), rubidium (Rb), and caesium (Cs). In this Thesis, static and dynamic compression techniques have been used to investigate the high-pressure high-temperature behaviour of the alkali elements potassium (K) and Na. Utilising diamond anvil pressure cells and external resistive heating, both in-air and in-vacuum, the melting curve of K has been determined to 24 GPa and 750 K, and is found to be remarkably similar to that of Na, but strikingly different to that reported previously. Furthermore, there is some evidence to suggest that a change in the compressibility of liquid-K occurs at lower pressures than the solid-solid phase transitions, perhaps indicating structural transitions occurring in the liquid phase, similar to those in the underlying solid. This could suggest a mechanism to explain the anomalous melting behaviour observed. Previous ab initio computational studies indicate that the unusual melting curve of Na arises due to structural and electronic transitions occurring in the liquid, mirroring those found in the underlying solid at higher pressures. The discovery that the melting curve of K is very similar to that of Na suggests that the same physical phenomena predicted for Na could be responsible for the high-pressure melting behaviour observed in K. The tI19 phase of K, observed above 20 GPa at 300 K, is a composite incommensurate host-guest structure consisting of 1D chains of guest atoms surrounded by a tetragonal host framework. Along the unique c-axis, the host and guest are incommensurate with each other. During the melting studies described above, it was observed that with increasing temperature, the weaker-bonded guest chains become more disordered while the host structure remains unchanged. To investigate and characterise this order-disorder transition, in situ synchrotron X-ray diffraction studies were conducted on single-crystal and quasi-single crystal samples of tI19-K. An order-disorder phase line has been mapped out to 50 GPa and 650 K. Perhaps the most striking departure from NFE behaviour in the alkali elements is observed in Na at pressures above 200 GPa where it transforms to a transparent electrical insulator. This phase is a so-called elemental “electride”, which may be thought of as being pseudo-ionically bonded. Electrides are predicted to exist in many elements, but at pressures far beyond the current capabilities of static pressure techniques. Utilising laser-driven quasi-isentropic compression techniques, dynamic compression experiments were performed on Na to see if it is possible to observe this electride phase under the timescales of dynamic compression experiment (ns). Optical velocimetry and reflectivity of the sample were measured directly to determine pressure and monitor the on-set of the transparent phase, respectively.
5

Compressão dinâmica em risers / Dynamic buckling in risers

Amarante, Rodrigo de Almeida 27 March 2015 (has links)
O presente trabalho foi realizado por meio de uma abordagem tríplice do problema de compressão dinâmica em risers, fundamentado em ensaios em um Calibrador Hidrodinâmico, com posterior confrontação dos resultados com formulações analíticas e o uso de programas comerciais dedicados ao estudo da estática e dinâmica de linhas flexíveis. O principal objetivo foi a determinação acurada, a partir de uma instrumentação pouco invasiva, dos comprimentos das ondas de flexão geradas no TDP, durante a compressão dinâmica. Esse objetivo, de per si, encerra o caráter de ineditismo da presente tese. Os ensaios consistiram na realização de movimentos circulares no topo de um modelo flexível lançado em catenária, sob diversas configurações, totalizando um total de 72 experimentos: foram utilizados três frequências de movimento, três amplitudes, quatro ângulos de topo e dois sentidos de rotação. Um sistema de monitoramento óptico foi utilizado como principal instrumentação. Além desse equipamento, foi utilizada uma célula de carga, posicionada entre o equipamento que prescrevia os movimentos ao modelo flexível e uma rótula, que permitia que a célula de cargas e movimentasse solidariamente ao sistema. Rotinas numérica próprias foram utilizadas para o pós-processamento dos dados obtidos. Os resultados foram, então, comparados com formulações analíticas constantes da literatura, bem como a adaptação da equação para a carga crítica de flambagem de vigas curvas, para as condições de contorno dos ensaios realizados. Como resultado principal, é possível citar a confirmação experimental da suposição corrente com relação ao número de onda associado às ondas de flexão geradas na compressão dinâmica, até então assumida como uma hipótese ad hoc. Além disso, o procedimento adotado, embasado teoricamente, foi utilizado desde o estabelecimento do material com que o modelo foi construído, passando pela elaboração racional da matriz de ensaios e finalizando com as análises realizadas, quando os resultados experimentais foram confrontados com as previsões analíticas. / This work was carried out through a threefold approach to dynamic compression in risers, based on tests in a Hydrodynamic Calibrator, with subsequent comparison of results with analytical formulations and the use of commercial softwares dedicated to the study of static and dynamic flexible lines. The main aim was an accurate determination, from a minimally invasive instrumentation, the lengths of flexural waves generated in the TDP, during dynamic compression. This goal, in itself, is the novelty of this thesis. The tests consisted in performing circular motion on top of a flexible catenary model launched under several conditions, amounting to a total of 72 experiments: three motion frequencies, three imposed amplitudes , four top angles and clockwise and counter-clockwise rotation. A tracking monitoring system was used as main instrumentation. In such equipment, a load cell was used, positioned between rotor used to prescribe top movements at the top of a flexible model, allowing the load cell jointly move around a bar conected to the shaft motor. Numerical routines, made by author, were used for data post-processing. The results were then confronted with analytical formulations from specialized literature, as well as the adaptation of the equation for the buckling critical load for curved beams under the boundary conditions of the tests. As a main result, it is possible to mention the experimental confirmation of the current assumption with respect to the wave number associated with bending waves generated during the dynamic compression, hitherto assumed as an ad hoc hypothesis. In addition, the procedure adopted, based in analytical theories, was used since the establishment of the material with which the model is built, through the rational development of the test matrix and ending with the analyzes carried out when the experimental results were compared with analytical predictions.
6

Compressão dinâmica em risers / Dynamic buckling in risers

Rodrigo de Almeida Amarante 27 March 2015 (has links)
O presente trabalho foi realizado por meio de uma abordagem tríplice do problema de compressão dinâmica em risers, fundamentado em ensaios em um Calibrador Hidrodinâmico, com posterior confrontação dos resultados com formulações analíticas e o uso de programas comerciais dedicados ao estudo da estática e dinâmica de linhas flexíveis. O principal objetivo foi a determinação acurada, a partir de uma instrumentação pouco invasiva, dos comprimentos das ondas de flexão geradas no TDP, durante a compressão dinâmica. Esse objetivo, de per si, encerra o caráter de ineditismo da presente tese. Os ensaios consistiram na realização de movimentos circulares no topo de um modelo flexível lançado em catenária, sob diversas configurações, totalizando um total de 72 experimentos: foram utilizados três frequências de movimento, três amplitudes, quatro ângulos de topo e dois sentidos de rotação. Um sistema de monitoramento óptico foi utilizado como principal instrumentação. Além desse equipamento, foi utilizada uma célula de carga, posicionada entre o equipamento que prescrevia os movimentos ao modelo flexível e uma rótula, que permitia que a célula de cargas e movimentasse solidariamente ao sistema. Rotinas numérica próprias foram utilizadas para o pós-processamento dos dados obtidos. Os resultados foram, então, comparados com formulações analíticas constantes da literatura, bem como a adaptação da equação para a carga crítica de flambagem de vigas curvas, para as condições de contorno dos ensaios realizados. Como resultado principal, é possível citar a confirmação experimental da suposição corrente com relação ao número de onda associado às ondas de flexão geradas na compressão dinâmica, até então assumida como uma hipótese ad hoc. Além disso, o procedimento adotado, embasado teoricamente, foi utilizado desde o estabelecimento do material com que o modelo foi construído, passando pela elaboração racional da matriz de ensaios e finalizando com as análises realizadas, quando os resultados experimentais foram confrontados com as previsões analíticas. / This work was carried out through a threefold approach to dynamic compression in risers, based on tests in a Hydrodynamic Calibrator, with subsequent comparison of results with analytical formulations and the use of commercial softwares dedicated to the study of static and dynamic flexible lines. The main aim was an accurate determination, from a minimally invasive instrumentation, the lengths of flexural waves generated in the TDP, during dynamic compression. This goal, in itself, is the novelty of this thesis. The tests consisted in performing circular motion on top of a flexible catenary model launched under several conditions, amounting to a total of 72 experiments: three motion frequencies, three imposed amplitudes , four top angles and clockwise and counter-clockwise rotation. A tracking monitoring system was used as main instrumentation. In such equipment, a load cell was used, positioned between rotor used to prescribe top movements at the top of a flexible model, allowing the load cell jointly move around a bar conected to the shaft motor. Numerical routines, made by author, were used for data post-processing. The results were then confronted with analytical formulations from specialized literature, as well as the adaptation of the equation for the buckling critical load for curved beams under the boundary conditions of the tests. As a main result, it is possible to mention the experimental confirmation of the current assumption with respect to the wave number associated with bending waves generated during the dynamic compression, hitherto assumed as an ad hoc hypothesis. In addition, the procedure adopted, based in analytical theories, was used since the establishment of the material with which the model is built, through the rational development of the test matrix and ending with the analyzes carried out when the experimental results were compared with analytical predictions.
7

Studies of dynamically and statically compressed antimony

Coleman, Amy Louise January 2018 (has links)
Physics at extreme conditions is not a young field; there have been decades of developments that have allowed us to generate high-pressure and high-temperature conditions in a vast array of materials. Conventionally, these extreme conditions were generated using static compression techniques; compressing a material in a diamond anvil cell which could then be heated or cooled, with structural information deduced using synchrotron radiation. These techniques are still invaluable for extreme conditions research although the pressures and temperatures that are accessible to them are limited by the strength of the diamond anvil cells and their ability to withstand extreme temperatures. The necessity for access to pressure-temperature states that are beyond the scope of the conventional diamond anvil cell is driven by the need to characterise extreme environments such as planetary interiors. It was long believed that materials in high pressure-temperature states would exhibit relatively simple, high-symmetry crystal structures, but recent research has proven that, conversely, there is an abundance of complex structural behaviour at these extreme conditions. One means of attaining pressure-temperature states beyond those accessible using static compression techniques is to impart a large amount of energy into a material in a comparatively short period of time (milliseconds to nanoseconds); this is known as dynamic compression. Dynamic compression can be generated using impact techniques or, alternatively, via laser ablation. Access to the most extreme conditions is commonly achieved by generating a shockwave which compresses the sample with the fastest achievable compression wave. Not only does this type of compression facilitate access to the most extreme states, it also allows us to explore the physics of impact phenomena and other such situations involving rapid energy transfer. Dynamic compression occurs on short timescales and, as such, there is a considerable challenge in implementing diagnostics to study the behaviour of compressed materials. Furthermore, because complexity is commonplace in extreme conditions, it is vital that any diagnostics should be able to provide data of high enough quality that this complexity may be resolved. The advent of 4th generation light sources (x-ray free electron lasers) has afforded us the opportunity to obtain extraordinarily high quality data on dynamic compression timescales. In the interest of refining analytical techniques when utilising this novel technology, materials exhibiting complex crystal structures should be investigated. Antimony is an element which is known, under static compression, to transform from a Peierls-distorted rhombohedral phase (R-3m) to an incommensurately modulated host-guest structure (I'4=mcm(00γ)000s), a structure with an incredibly high level of complexity. The complexity of this host-guest phase, and the relatively low pressure at which it forms, makes antimony an ideal candidate for testing the resolution achievable using these 4th generation light sources. Furthermore, it is interesting to observe whether such a complex phase can form on the short timescales of dynamic compression. In this work antimony is both statically and dynamically compressed and the results of both experiments are compared. A static phase diagram is constructed for antimony up to 31 GPa and 835 K, confirming the location of a previously theorised triple point and suggesting the location of an additional triple point. Three solid phases are characterised and data are found to agree with the pre-existing static compression studies. The nature of the host-guest phase is investigated and the guest 'chains' are found to remain intact even at the highest temperatures and pressures, a result which has not previously been observed in high pressure-temperature host-guest structures. Dynamic data from shock-compression experiments at pressures up to 59.3 GPa are plotted alongside the static data and contrasting phase behaviour is discussed. Four solid phases are identified along with one liquid phase. Observation of the host-guest phase in shock-compressed antimony confirms that highly complex crystal structures are able to form on the nanosecond timescale.
8

Análise dinâmica não linear bidimensional de risers. / Bidimensional nonlinnear dynamic analysis of risers.

Archilla Galan Neto, Nicolau 09 November 2012 (has links)
Este trabalho contextualiza o problema da análise estrutural bidimensional de risers verticais ou lançados em catenária livre, fazendo uma breve descrição das etapas para a modelagem dessas estruturas. O problema que este trabalho se propõe a resolver é o da análise dinâmica não linear destas estruturas, no domínio do tempo, apresentando uma formulação que seja capaz de representar de forma adequada as etapas de modelagem destes sistemas. A modelagem foi dividida em duas etapas. A primeira delas é referente à fase de lançamento do riser, com o objetivo de determinar a configuração deformada de equilíbrio, assim como os esforços solicitantes internos decorrentes dessa configuração deformada. Ressalta-se que para os casos de risers em catenária livre, considera-se também o contato unilateral da estrutura com o solo marinho. A segunda etapa é a modelagem da fase de operação da estrutura, por meio de um modelo dinâmico bidimensional. Em ambas as etapas, a formulação apresentada considera os efeitos de acoplamento fluidoestrutura. No caso dos risers em catenária, considera-se também o efeito da interação solo-estrutura. Todo o desenvolvimento das equações foi realizado utilizando-se o método dos elementos finitos MEF. A formulação desenvolvida contempla dois elementos finitos, um de treliça e outro de barra, utilizando-se um sistema de coordenadas corrotacionais. A utilização deste sistema de coordenadas possibilitou a adoção de teorias estruturais de pequenas deformações, para a análise de problemas que envolvem grandes deslocamentos e rotações finitas. Além da formulação do problema, também foi apresentado o projeto da ferramenta computacional RiserSys, que é específica para o estudo de risers nas configurações reta (vertical) e em catenária livre. Muito embora não seja o objetivo deste trabalho a implementação computacional do código nesta ferramenta e o estudo de casos referentes a fenômenos de dinâmica não linear nessas estruturas, nas considerações finais, propõe-se, como trabalhos futuros, a utilização desta formulação para o estudo da compressão dinâmica e a instabilidade paramétrica. / This work addresses the problem of the bidimensional analysis of risers, either straight or free hanging, giving a brief description of the modeling steps of these structures. The problem that it is meant to be solved is the nonlinear dynamic analysis in the time domain of these structures, presenting a formulation capable of correctly modeling the steps of the analysis of the system. The modeling was divided into two steps. The first one is referred to the riser installation, in which the objective was to find the deformed configuration of equilibrium and its internal forces. For the free hanging risers, the unilateral contact with the seabed is taken into account. The second step of the modeling is the phase of operation, using a bidimensional dynamic model. Both steps of the modeling consider the fluid-structure coupling phenomenon. For the free hanging risers, the soil-structure interaction is taken into account. All the analyses were performed using the finite element method FEM. Two finite elements were formulated 2D truss and 2D Bernoulli Euler beam both using a co-rotational coordinate system. The co-rotational coordinate system allowed the use of small-strain theory to develop these finite elements to study problems that involve large displacements. Besides the problem formulation, the project of a computational code, named RiserSys, was described. RiserSys is a dedicated computational tool to analyze straight and free hanging risers. Although the objective of this work is not the computational implementation and the analysis of cases studies, in the concluding chapter it is proposed, as future work, the use of the formulation presented herewith to analyze non-linear dynamic phenomena that may take place in these systems, such as dynamic compression and parametric instability.
9

Análise dinâmica não linear bidimensional de risers. / Bidimensional nonlinnear dynamic analysis of risers.

Nicolau Archilla Galan Neto 09 November 2012 (has links)
Este trabalho contextualiza o problema da análise estrutural bidimensional de risers verticais ou lançados em catenária livre, fazendo uma breve descrição das etapas para a modelagem dessas estruturas. O problema que este trabalho se propõe a resolver é o da análise dinâmica não linear destas estruturas, no domínio do tempo, apresentando uma formulação que seja capaz de representar de forma adequada as etapas de modelagem destes sistemas. A modelagem foi dividida em duas etapas. A primeira delas é referente à fase de lançamento do riser, com o objetivo de determinar a configuração deformada de equilíbrio, assim como os esforços solicitantes internos decorrentes dessa configuração deformada. Ressalta-se que para os casos de risers em catenária livre, considera-se também o contato unilateral da estrutura com o solo marinho. A segunda etapa é a modelagem da fase de operação da estrutura, por meio de um modelo dinâmico bidimensional. Em ambas as etapas, a formulação apresentada considera os efeitos de acoplamento fluidoestrutura. No caso dos risers em catenária, considera-se também o efeito da interação solo-estrutura. Todo o desenvolvimento das equações foi realizado utilizando-se o método dos elementos finitos MEF. A formulação desenvolvida contempla dois elementos finitos, um de treliça e outro de barra, utilizando-se um sistema de coordenadas corrotacionais. A utilização deste sistema de coordenadas possibilitou a adoção de teorias estruturais de pequenas deformações, para a análise de problemas que envolvem grandes deslocamentos e rotações finitas. Além da formulação do problema, também foi apresentado o projeto da ferramenta computacional RiserSys, que é específica para o estudo de risers nas configurações reta (vertical) e em catenária livre. Muito embora não seja o objetivo deste trabalho a implementação computacional do código nesta ferramenta e o estudo de casos referentes a fenômenos de dinâmica não linear nessas estruturas, nas considerações finais, propõe-se, como trabalhos futuros, a utilização desta formulação para o estudo da compressão dinâmica e a instabilidade paramétrica. / This work addresses the problem of the bidimensional analysis of risers, either straight or free hanging, giving a brief description of the modeling steps of these structures. The problem that it is meant to be solved is the nonlinear dynamic analysis in the time domain of these structures, presenting a formulation capable of correctly modeling the steps of the analysis of the system. The modeling was divided into two steps. The first one is referred to the riser installation, in which the objective was to find the deformed configuration of equilibrium and its internal forces. For the free hanging risers, the unilateral contact with the seabed is taken into account. The second step of the modeling is the phase of operation, using a bidimensional dynamic model. Both steps of the modeling consider the fluid-structure coupling phenomenon. For the free hanging risers, the soil-structure interaction is taken into account. All the analyses were performed using the finite element method FEM. Two finite elements were formulated 2D truss and 2D Bernoulli Euler beam both using a co-rotational coordinate system. The co-rotational coordinate system allowed the use of small-strain theory to develop these finite elements to study problems that involve large displacements. Besides the problem formulation, the project of a computational code, named RiserSys, was described. RiserSys is a dedicated computational tool to analyze straight and free hanging risers. Although the objective of this work is not the computational implementation and the analysis of cases studies, in the concluding chapter it is proposed, as future work, the use of the formulation presented herewith to analyze non-linear dynamic phenomena that may take place in these systems, such as dynamic compression and parametric instability.
10

APPLICATION OF X-RAY DIGITAL IMAGE CORRELATION (XDIC) ON MATERIALS WITH ENGINEERED SPECKLES

Junyu Wang (9713912) 12 December 2020 (has links)
As an intrinsic requirement for digital image correlation (DIC)to be applicable, the images must exhibit a speckle pattern of sufficient unique features. Researchers have incorporated X-ray phase contrast imaging (PCI) and DIC (XDIC) and conducted studies on materials with natural internal features as speckles. This study is the first attempt to explore the applicability and standards of XDIC to be applied on materials that are transparent under X-ray PCI, mainly polymers, by deliberately embedding particles into the sample. The goal is to generate a high-quality speckle while maintaining the least influence on the material’s properties. Iron oxide (FeO), tungsten carbide (WC), and platinum (Pt) are embedded into Sylgard® epoxy at various weight ratios, and the Sylgard® samples are loaded with a Kolsky compression bar paired with high-speed X-ray PCI. The speckle quality of the PCI images is assessed using a mean intensity gradient based approach, as well as intensity distribution analysis. DIC is applied to the images to measure the displacement field in the loading direction, and the results are analyzed. The engineering stress-strain relationship is generated from the Kolsky bar apparatus, and the results are compared to find the influence of the added particles.<div><br></div><div>The results indicate thatthe addition of particles does not significantly alter the base polymer’s properties, and the theoretical deviation error can be as low as less than 0.01 pixels. Disregarding the limited applicability to embed into polymer samples, platinum produces the best speckle. WC particle is the superior choice of material to embed for its good speckle quality, ease of embedding, and good availability. Lower weight ratios are shown to be preferential. This study also emphasizes the importance of sample design when applying XDIC to materials with embedded particles. It is preferential for best accuracy to design the region of interest to be away from the surfaces of the samples and be located near the back of the sample with respect to the impact surface.<br></div>

Page generated in 0.0958 seconds