• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of Dynamically Assisted Phase-shifting Transformers

Johansson, Nicklas January 2008 (has links)
<p>In this thesis, controllers for power oscillation damping, transient stability improvement and power flow control by means of a Controlled Series Compensator (CSC) and and a Dynamic Power Flow Controller (DPFC) are proposed. These devices belong to the group of power system components referred to as Flexible AC Transmission System (FACTS) devices. The developed controllers use only quantities measured locally at the FACTS device as inputs, thereby avoiding the risk of interrupted communications associated with the use of remote signals for control.</p><p>For power systems with one dominating, poorly damped inter-area power oscillation mode, it is shown that a simple generic system model can be used as a basis for damping- and power flow control design. The model for control of CSC includes two synchronous machine models representing the two grid areas participating in the oscillation and three reactance variables, representing the interconnecting transmission lines and the FACTS device. The model for control of DPFC is of the same type but it also includes the phase shift of the internal phase-shifting transformer of the DPFC.</p><p>The key parameters of the generic grid models are adaptively set during the controller operation by estimation from the step responses in the FACTS line power to the changes in the line series reactance inserted by the FACTS device. The power oscillation damping controller is based on a time-discrete, non-linear approach which aims to damp the power oscillations and set the desired power flow on the FACTS line by means of two step changes in the line reactance separated in time by half an oscillation cycle.</p><p>A verification of the proposed controllers was done by means of digital simulations using power system models of different complexities. The CSC and DPFC controllers were shown to significantly improve the small-signal- and transient stability in one four-machine system of a type commonly used to study inter-area oscillations. The CSC controller was also tested for 18 different contingencies in a 23-machine system, resulting in an improvement in both the system transient stability and the damping of the critical oscillation mode. </p>
2

Aspects on Dynamic Power Flow Controllers and Related Devices for Increased Flexibility in Electric Power Systems

Johansson, Nicklas January 2011 (has links)
This thesis studies different aspects of Flexible AC Transmission System (FACTS) devices which are used to improve the power transfer capability and increase the controllability in electric power systems. In the thesis, different aspects on the usage and control of Dynamic Power Flow Controllers (DPFC) and related FACTS devices are studied. The DPFC is a combination of a Phase Shifting Transformer (PST) and a Thyristor Switched Series Capacitor (TSSC)/Thyristor Switched Series Reactor (TSSR). The thesis proposes and studies a new method, the Ideal Phase-Shifter (IPS) method, for selection and rating of Power Flow Controllers (PFC) in a power grid. The IPS method, which is based on steady-state calculations, is proposed as a first step in the design process for a PFC. The method uses the Power controller plane, introduced by Brochu et al in 1999. The IPS method extends the usage of decoupling methods in the Power controller plane to a power system of arbitrary size. The IPS method was in the thesis used to compare the ratings of different PFC:s required to improve the power transfer capability in two test systems. The studied devices were here the PST, the TSSC/TSSR and the DPFC. The thesis treats control of ideal Controlled Series Capacitors (CSC), TCSC, TSSC/TSSR, and DPFC. The goals of the FACTS controllers which are developed are Power Oscillation Damping (POD), fast power flow control, and transient stability improvement in the power system. New adaptive control strategies for POD and power flow control are proposed and studied in different models of power systems by time-domain simulations. A strategy for transient stability improvement is also proposed and studied. Additionally, different methods for study of Subsynchronous Resonance (SSR), which is associated with series compensation in power systems, are investigated. Here, four of the most common methods for frequency scanning to determine the electrical damping of subsynchronous oscillations in a power grid are studied. The study reveals significant differences of the electrical damping estimates of the studied standard methods when applied to a four-machine test system. / QC 20110819
3

Control of Dynamically Assisted Phase-shifting Transformers

Johansson, Nicklas January 2008 (has links)
In this thesis, controllers for power oscillation damping, transient stability improvement and power flow control by means of a Controlled Series Compensator (CSC) and and a Dynamic Power Flow Controller (DPFC) are proposed. These devices belong to the group of power system components referred to as Flexible AC Transmission System (FACTS) devices. The developed controllers use only quantities measured locally at the FACTS device as inputs, thereby avoiding the risk of interrupted communications associated with the use of remote signals for control. For power systems with one dominating, poorly damped inter-area power oscillation mode, it is shown that a simple generic system model can be used as a basis for damping- and power flow control design. The model for control of CSC includes two synchronous machine models representing the two grid areas participating in the oscillation and three reactance variables, representing the interconnecting transmission lines and the FACTS device. The model for control of DPFC is of the same type but it also includes the phase shift of the internal phase-shifting transformer of the DPFC. The key parameters of the generic grid models are adaptively set during the controller operation by estimation from the step responses in the FACTS line power to the changes in the line series reactance inserted by the FACTS device. The power oscillation damping controller is based on a time-discrete, non-linear approach which aims to damp the power oscillations and set the desired power flow on the FACTS line by means of two step changes in the line reactance separated in time by half an oscillation cycle. A verification of the proposed controllers was done by means of digital simulations using power system models of different complexities. The CSC and DPFC controllers were shown to significantly improve the small-signal- and transient stability in one four-machine system of a type commonly used to study inter-area oscillations. The CSC controller was also tested for 18 different contingencies in a 23-machine system, resulting in an improvement in both the system transient stability and the damping of the critical oscillation mode. / QC 20101112

Page generated in 0.0949 seconds