• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Developing Of System To Evaluate Safety Child Seat And Restraints System According To Ece R44

Col, Remzi 01 June 2012 (has links) (PDF)
Great loads occur on human body in traffic accidents. Children body have less resistance to these loads. Child Restraint Systems (CRS) are the safety elements used in vehicles for children. In this study, the overturning and the dynamic test setups for CRS, have been designed and analysed according to United Nations Economic Commission for Europe Regulation No 44 (ECE R44). After manufacturing of the test setups, four different types of CRSs sold in Turkish market have been selected to evaluate their performance according to ECE R44. Each seat has been used once for the tests. The tests have been performed and evaluated according to the performances of CRSs for the dynamic test head displacement limit criterion, the acceleration limit criterion, the abdominal penetration criterion and the overturning head displacement limit criterion. 11 overturning tests and 8 dynamic tests at the sled test facility available in METU-BILTIR Center Vehicle Safety Unit have been conducted. In the tests, P-series 3 years, 6 years and 10 years old child test dummies have been used. During the dynamic tests, 3-axial accelerometer, high-g high speed camera and data acquisition system are also used to gather the test data. 8 more dynamic test with unlocked vehicle safety belt which is improper usage and commonly encountered in real life. As the result of the tests, none of the CRSs succeed in the tests for child seats which are supposed to be used by 3-6 years old children according to ECE R 44 Group II.
12

Ultrastructural Aspects of Pulp Fibers as Studied by Dynamic FT-IR Spectroscopy

Åkerholm, Margaretha January 2003 (has links)
<p>Dynamic (or 2D) FT-IR spectroscopy in combination withpolarized IR irradiation has been used in this work to studywood polymer orientation and interactions on theultrastructural level in wood fibers in the native state aswell as the effects of different pulping processes. The woodpolymer interactions were studied under both dry and humidconditions.</p><p>The matrix of lignin and hemicelluloses located between thewell-ordered cellulose fibrils in the wood cell wall of sprucewas here shown to be more highly ordered than has earlier beenrevealed. It was confirmed that glucomannan is orientedparallel to the cellulose fibrils and is highly coupled to it.The lignin was also shown to have a main orientation in thestructure although this is probably not as strong as that ofglucomannan. The orientation of the lignin may derive from thefact that the polysaccharides act as templates during thelignification of the cell wall. This organization implies thatnot only the cellulose but also the lignin and thehemicelluloses have different mechanical properties in thelongitudinal and cross-fiber directions.</p><p>The ability to gain molecular information on the stresstransfer in polymers with dynamic FT-IR spectroscopy made itpossible to verify experimentally earlier molecularcalculations on the stress transfer within the cellulose chain.It was also possible to show, on the molecular level, thedominant importance of the cellulose fibrils for the stresstransfer in the longitudinal direction of pulp fibers,including lignin-rich mechanical pulp fibers. The glucomannanof softwood fibers was also shown to participate in the stresstransfer in the fiber direction indicating a close associationwith the cellulose, whereas the xylan showed no dynamicresponse. Already under dry conditions, the lignin was shown tohave a more viscoelastic response than the polysaccharidesduring the loading of pulp fibers and it was thus able to moveindependently of the cellulose.</p><p>The enhanced spectral resolution obtained with dynamic FT-IRspectroscopy made it possible to study the crystalstructure/chain order of cellulose in pulp fibers. Thepossibility of following changes in the relative cellulose Iallomorph composition of pulp fibers was demonstrated for somechemical pulps.</p><p>Dynamic FT-IR experiments under humid conditions and ofelevated temperatures made it possible to study the softeningof the biopolymers in their native environment. This was alsodemonstrated for some different pulps, and this may be apromising tool for obtaining viscoelastic information on themolecular level in composite systems such as wood fibers.</p><p><b>Keywords:</b>cellulose, cooperation, crystallinity, dynamictest, glucomannan, hardwood, holocellulose, humidity, infraredspectroscopy, kraft pulp, lignin, mechanical pulp, orientation,polarised light, softwood, strain, sulphite pulp,viscoelasticity, xylan</p>
13

Avaliação da rigidez à flexão de toras de madeira por meio de vibração transversal / Evaluation of bending stiffness of wood logs by means of transverse vibration

Marcelo Rodrigo Carreira 12 March 2012 (has links)
Antes de utilizar as toras de madeira como elemento estrutural é necessário avaliar as propriedades mecânicas desse material tanto por inspeção visual quanto por ensaio mecânico. A técnica de vibração transversal tem se destacado entre os demais métodos de Avaliação Não-Destrutiva para madeira serrada por obter estimativas acuradas do módulo de elasticidade à flexão. Contudo, testes prévios com essa técnica evidenciaram dificuldades de empregá-la na avaliação a rigidez à flexão de toras. O objetivo deste trabalho foi propor um método de ensaio para estimar o módulo de elasticidade na flexão de toras de madeira por meio de vibração transversal. O método proposto foi testado e validado em uma amostra de 40 toras de Eucalyptus sp. Foram obtidas boas correlações entre o módulo de elasticidade estático e o módulo de elasticidade dinâmico obtido pelo ensaio de vibração transversal. / Before using the wood logs as a structural element is necessary to evaluate the mechanical properties of this material by visual inspection and mechanical testing. The transverse vibration technique has stood out among the other methods of Non-Destructive Evaluation for lumber to obtain accurate estimates of the bending modulus of elasticity. However, previous tests showed difficulties with this technique to use it to evaluate the bending stiffness of logs. The aim of this work is to propose a test method to estimate the bending modulus of elasticity of wood logs by means of transverse vibration. The proposed method was tested and validated on a sample of 40 logs of Eucalyptus sp. It was obtained good correlation between the static bending and dynamic modulus of elasticity obtained by transverse vibration test.
14

Development of Dynamic Test Method and Optimisation of Hybrid Carbon Fibre B-pillar

Johansson, Emil, Lindmark, Markus January 2017 (has links)
The strive for lower fuel consumption and downsizing in the automotive industry has led to the use of alternative high performance materials, such as fibre composites. Designing chassis components with composite materials require accurate simulation models in order to capture the behaviour in car crashes. By simplifying the development process of a B-pillar with a new dynamic test method, composite material products could reach the market faster. The setup has to predict a cars side impact crash performance by only testing the B-pillar in a component based environment. The new dynamic test method with more realistic behaviour gives a better estimation of how the B-pillar, and therefore the car, will perform in a full-scale car side impact test. With the new improved tool for the development process, the search for a lighter product with better crash worthiness is done by optimising a steel carbon fibre hybrid structure in the B-pillar. The optimisation includes different carbon fibre materials, composite laminate lay-up and stiffness analysis. By upgrading simulation models with new material and adhesive representation physical prototypes could be built to verify the results. Finally the manufactured steel carbon fibre hybrid B-pillar prototypes were tested in the developed dynamic test method for a comparison to the steel B-pillar. The hybrid B-pillars perform better than the reference steel B-pillar in the dynamic tests also being considerably lighter. As a final result a hybrid B-pillar is developed that will decrease fuel consumption and meet the requirements of any standardized side impact crash test. / Strävan efter lägre bränsleförbrukning och minimalistiskt tänkande inom bilindustrin har lett till användning av alternativa högpresterande material, såsom fiberkompositer. Vid design av chassi-komponenter utav kompositer krävs noggranna simuleringsmodeller för att fånga upp bilens beteende vid en krock. Genom att förenkla utvecklingsprocessen för en B-stolpe med en ny dynamisk testmetod kan produkter bestående av fiberkompositer nå marknaden snabbare. Provuppställningen skall förutse bilens prestanda vid ett sidokrocktest genom att endast testa B-stolpen i en komponentbaserad miljö. Den nya dynamiska testmetoden med ett mer realistiskt beteende skall ge en bättre uppskattning om hur B-stolpen, och därmed bilen, kommer att prestera i ett fullskaligt sidokrocktest. Med utvecklingsprocessens nya förbättrade verktyg kan strävan mot lättare produkter med bättre krocksäkerhet utvecklas genom optimering av en hybrid B-stolpe i stål och kolfiber. Optimeringen innefattar olika kolfibermaterial, laminatvarianter och styvhetsanalyser. Genom att uppgradera simuleringsmodeller med nya material och adhesiva metoder kunde fysiska prototyper tillverkas för att verifiera resultaten. Slutligen testades de tillverkade prototyperna utav stål och kolfiber i den nyutvecklade dynamiska testmetoden för jämförelse mot den ursprungliga stål B-stolpen. Hybrid B-stolparna presterade bättre än referensstolpen utav stål i de dynamiska provningarna och är samtidigt betydligt lättare. Det slutgiltigt resultatet är en utvecklad hybrid B-stolpe som både ger minskad bränsleförbrukningen och uppfyller kraven för ett standardiserat sidokrocktest.
15

États limites ultimes de cadres en acier isolés sismiquement avec des amortisseurs élastomères et des contreventements en chevrons

Yzema, Fritz Alemagne January 2014 (has links)
Résumé : Ce projet de maîtrise s’intéresse au comportement ultime d’une structure en acier, contrôlée sismiquement par des amortisseurs élastomères et des contreventements en chevron. Les séismes peuvent causer des dommages considérables quand les infrastructures et les bâtiments ne sont pas construits selon les normes et les techniques appropriées. Par conséquent, réduire l’impact des séismes revient particulièrement à construire des ouvrages sécuritaires en tenant compte bien entendu du paramètre économique. Ainsi Gauron, Girard, Paultre et Proulx ont étudié en 2009, un système de reprise de forces latérales, constitué uniquement de treventements en chevron montés en série avec des amortisseurs en caoutchouc naturel fibré ayant de nombreux avantages. Premièrement, le système reste élastique sous le séisme de design en réduisant les efforts sismiques linéaires par un facteur supérieur à R[indice inférieur d] = 3 par rapport à un cadre conventionnel. Deuxièmement, il est capable de contrôler les déplacements sous la limite du CNBC 2010 (Code National du Bâtiment du Canada 2010), et même de réduire ces derniers dans certains cas. Par conséquent, il permet de réduire les sections des poutres et des poteaux des cadres par rapport à une structure conventionnelle ainsi que les coûts de réparation après un séisme. Toutefois, le comportement à l’état limite ultime d’un tel système, ses limites et ses réserves de sécurité restaient à déterminer. Ainsi, l’objectif global de ce projet de recherche est de déterminer les différents mécanismes de ruine possibles de ce système, d’établir des limites et réserves de sécurité, et de préciser, après avoir formulé certaines recommandations, à quelles conditions il peut être utilisé dans le dimensionnement de nouvelles structures. Pour atteindre les objectifs fixés, deux essais quasi statiques ont été réalisés sur deux cadres en acier dimensionnés avec le système. Des essais dynamiques ont aussi été réalisés afin d’avoir les propriétés viscoélastiques des amortisseurs. Le premier essai a mis en évidence un mécanisme de ruine inattendu et prématuré qui a souligné un défaut majeur dans les connexions des diagonales avec l’amortisseur. Le second essai a révélé un des mécanismes de ruine envisagés initialement où le caoutchouc se déchire après l’initiation du flambement dans la diagonale comprimée. Les résultats expérimentaux ont montré que l’amortisseur constitue le maillon faible du système, et que des efforts parasites peuvent réduire significativement la capacité portante des structures dimensionnées avec un tel système. Dans les deux cas, les résultats ont montré que la méthode de dimensionnement du système tel qu’elle est définie actuellement mérite d’être améliorée. En ce sens, des recommandations relatives au dimensionnement des différents éléments des structures dimensionnées avec le système ont été élaborées, particulièrement en ce qui concerne le caoutchouc et les connexions. // Abstract : This thesis focuses on the ultimate behavior of steel structures, controlled seismically by elastomeric dampers and chevron bracings. Earthquakes can cause considerable damages when infrastructures and buildings are not built considering appropriate standards and technics. Therefore, mitigating the impact of earthquakes means essentially building safe structures by taking account of economic parameters too. Thus Gauron, Girard, Paultre and Proulx studied in 2009 a seismic force resisting system consisting only of chevron braces connected in series with fiber-reinforced natural rubber dampers that offers many benefits. First, the system remains elastic under the design earthquake by reducing linear seismic efforts by a factor of R[subscript d] = 3 compared to a conventional frame. Secondly, it allows to control the displacements under the limits of NBCC 2010 (National Building Code of Canada 2010), and even to reduce them in some cases. Therefore, it allows a reduction of sections of beams and columns of conventional frames and it prevents repairing costs of the structure after an earthquake. However, the ultimate limit state behavior of this system, its limitations and safety reserves have not been determined yet. Thus, the overall objective of this project is to determine the different possible failure mechanisms of the system, to set its limits and safety reserves, and to state after some recommendations, how it can be used in the design of new structures. To achieve these objectives, two quasi static tests were performed on two steel frames designed with the new system. Dynamic tests were also conducted to get the viscoelastic properties of the damping material. The first quasi static test revealed an unexpected and premature failure mechanism that pointed out a major flaw in the connections of the braces with the damper. The second test revealed one of the failure mechanisms originally expected where the rubber tears after buckling of the compression brace. The experimental results have shown that the damper is the weak element in the system, and that additional forces can significantly reduce the structural capacity of structures designed with the system. In both cases, the results have shown that the actual design method of the system should be improved. Thus, recommendations for the design of elements of structures designed with this system have been developed, particularly with regard to the rubber and brace connections.
16

Prediction of Physical Behavior of Rotating Blades under Tip-Rub Impact using Numerical Modeling

Subramanya, S January 2013 (has links) (PDF)
Rotating blades, which are the most critical components of any turbo-machinery, need to be designed to withstand forced vibrations due to accidental tip rub impact against inner surface of casing. These vibrations are typically dependent on operating conditions and geometric parameters. In the current study, a rotor test rig with a maximum tip speed capability of 144 km/hr has been developed for studying the dynamic behavior of representative jet engine compressor blades actuated by the closure of clearance between the tip of a given rotating blade and a sector of the inner lining of the casing. Ten different blade profiles are chosen in the present research. The blades are obtained by lofting NACA GOE123 airfoil cross-section along different stacking axes. Rotor test rigs which simulate transient dynamic events require high frequency data acquisition systems like slip ring arrangement or telemetric transmission. While slip rings introduce noise into the signal, the telemetric transmission works out to be rather expensive. To circumvent the stated shortcomings of data acquisition systems, a novel rotor-mounted data acquisition system has been implemented here which captures dynamic strains in vibrating blades during operation. The current data acquisition system can store data for duration of five seconds with a sampling rate of 35 kHz. It has been calibrated with four standard tests, and provides a simple and efficient mode of data capturing. Three blades with airfoil sections (a flat beam-type blade of uniform rectangular cross-section, a blade with twisted cross-sections stacked along a straight line, and a blade similar to the latter but with a curved stacking axis) are tested under controlled rub conditions at four different speeds. The maximum test speed is restricted to 800 rpm for reasons of safety although the set-up is designed to operate up to a maximum speed of 2000 rpm. For each of the rotor speeds, a blade is tested for three to four different stagger angles in the range of 0o-30o. By plotting the RMS values of measured dynamic responses with respect to stagger angle for a given rotor speed, it has been observed, perhaps for the first time in published literature, that a stagger angle of around 20o yields the maximum RMS value of strain response. A major objective of the current study has been to utilize the data generated in the tip rub impact tests for validating a predictive numerical model of the test set-up using explicit finite element analysis. To this end, a finite element model of the rotor rig inclusive of a rotor with two blades and the static frame structure is developed and analyzed using an explicit LS-DYNA solver. This model is calibrated with the test results of the three blade designs described above. In particular, it has been shown that the frequency contents of the measured dynamic strain responses agree quite well with frequencies obtained from the numerically computed responses. It has been found in the experimental responses that a given blade vibrates with two main frequencies: one corresponding to the first natural frequency of the rotor-blade system during the tip-rubbing phase (which lasts until the blade tip is in contact with the rub element which is a sector of the circular casing), and another corresponding to the first natural frequency of the blade when it vibrates freely without its tip being in contact with the rub-liner of the casing. A shortcoming of the current modeling approach is its inability to realistically represent the damping behaviors observed in the tests. For reasons of computational efficiency and consistent with the fact that there was no perceptible damage in the tested blades, an elastic constitutive behavior is specified for the blades, while the sacrificial PVC rub-liner is assumed to behave elasto-plastically. A limited study has also been carried out by assigning an elasto-plastic constitutive model to one of the blades previously represented with elastic properties only, and although incipient yielding is observed in a highly localized region at the tip of a blade (which can also be a numerical artifact), the responses under the two material behavior considerations (i.e. elastic and elasto-plastic) are found to be nearly same. Finally, this validated modeling approach is applied to the study of blades of ten distinct geometric profiles (including the three configurations already considered) at a speed of 800 rpm and the resonant speed of a given blade. Comparisons are made between the relevant responses (such as time-histories of root strain, shaft torque, blade axial displacement, bearing load and rub force) of nine blades with airfoil cross-sections (leaving aside the results for the first blade of rectangular cross-section which is only of academic interest). Based on this study, of all the blade designs, it has been found that the curve-stacked airfoils exhibit better ‘Rub-tolerant’ behavior. Both experimental and simulation results have predominantly proven the fact that adding curvature to a straight stacked blade through curve-stacked or bow result in reducing the rub induced vibration. While sweep and bow provide some aerodynamic advantages, they are not much helpful in containing the vibrations to a sustainable extent.

Page generated in 0.4134 seconds