• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characteristics of dynamic abnormal grain growth in commercial-purity molybdenum

Worthington, Daniel Lee 06 February 2012 (has links)
Dynamic abnormal grain growth (DAGG) in commercial-purity molybdenum sheets was investigated through a series of tensile tests at temperatures between 1450°C and 1800°C. DAGG is abnormal grain growth (AGG) which requires the presence of concurrent plastic strain. Most AGG phenomena previously documented in the literature can be categorized as static abnormal grain growth (SAGG) because they occur during static annealing, sometimes following plastic strain, but do not occur during plastic deformation. The DAGG boundary migration rate is much faster than the SAGG boundary migration rate, and DAGG may be utilized to obtain large single crystals in the solid state. Dynamic abnormal grains were found to exhibit a crystallographic orientation preference with respect to the specimen geometry, generally described as derivative from a <101> fiber texture. DAGG was found to prefer growth on the surface of the specimen rather than the interior. The growth of dynamic abnormal grains, which initiated and grew during plastic straining, generally ceased when the application of plastic strain was removed. The DAGG boundary migration rate was found to be a direct function of plastic strain accumulation, regardless of the strain-rate. Therefore, it is hypothesized that the rapid boundary migration rate during DAGG results from an enhanced mobility of certain boundaries. A model is proposed based on the rate of boundary unpinning, as mediated by the emission of dislocations from pinning sites. / text
2

Dynamic abnormal grain growth of selected refractory metals

Pedrazas, Nicholas Alan 25 September 2013 (has links)
Dynamic abnormal grain growth (DAGG) is a phenomenon by which single crystals up to centimeters in length are produced at elevated temperature during the application of strain. DAGG was previously demonstrated in commercial-purity molybdenum (Mo) materials. This is the first investigation to confirm DAGG in another material, tantalum (Ta). Previous experiments initiated and propagated DAGG using constant true-strain rate tensile tests, but this study demonstrates that DAGG can also occur under constant true-stress tensile conditions. A Mo material was tested under constant true stress, and two Ta materials were tested under constant true-strain rate. The effects of temperature, stress, strain rate, initial microstructure and texture on tensile test data and the resulting microstructures are examined. The microstructures of the Ta materials are analyzed using electron backscatter diffraction (EBSD) data to quantify the orientation, deformation, grain boundary character, and slip properties of the DAGG grains and unconsumed microstructure. The DAGG grains were found to be relatively undeformed compared to the unconsumed microstructure following DAGG and to not be oriented favorably, or unfavorably, for slip. The grain boundaries between DAGG grains in one Ta material were found to commonly have [sigma]3 character. This was likely due to a strong initial <111>-fiber texture. Previous investigations of DAGG in Mo indicated that DAGG grains commonly grow along the surface of the specimen, but this was not observed with significant frequency in Ta. Results suggest that the distance the DAGG grain boundary travels is proportional to the accumulated strain during DAGG, and the velocity of the DAGG grain boundary is proportional to the applied strain rate but is not related to the orientation of the DAGG grain or its slip properties. / text
3

Creep and dynamic abnormal grain growth of commercial-purity molybdenum

Ciulik, James R. 21 January 2011 (has links)
In this experimental investigation, the tensile creep behavior of commercial-purity molybdenum sheet at temperatures between 1300°C and 1700°C is critically evaluated, based upon experimental creep testing and microstructural characterizations. The high-temperature properties of molybdenum are of interest because there are many applications in which molybdenum and molybdenum alloys are used at elevated temperatures. Understanding of the creep mechanisms and the constitutive relations between stress and strain at elevated temperatures is needed in order to determine if molybdenum is an appropriate choice for a given high-temperature design application and to accurately predict its creep life. The creep behavior of two commercially-available grades of molybdenum was determined using short-term creep tests (1/2 to 14 hours) at slow to moderate true-strain rates of 10⁻⁶ to 10⁻⁴ s⁻¹ and temperatures between 1300°C and 1700°C. High-temperature, uniaxial tensile testing was used to produce data defining the relationship between tensile creep strain-rate and steady-state flow stress at four temperatures: 1340°C, 1440°C, 1540°C, 1640°C. Microstructural changes that occurred during creep testing were evaluated and compared to changes resulting from elevated temperature exposure alone. Mechanisms for dynamic abnormal grain growth that occurred during creep testing and the causes of the microstructural changes that occurred as a function of temperature are discussed. / text

Page generated in 0.0824 seconds