• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 23
  • 2
  • 2
  • 1
  • Tagged with
  • 64
  • 64
  • 13
  • 12
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Determination and Analysis of Deformations in a Soil Under Dynamic Loading

Krzywicki, Henry 09 1900 (has links)
This Thesis describes a method for determining and analysing the deformations in peat caused by a driven rigid wheel. Markers were placed in the peat sample and radiographs were taken as the wheel travelled over the surface of the peat. An analysis of the data revealed that a unique relationship existed between the positions of the markers and the positions of the wheel. The paths of the principal stress trajectories were determined by a graphical method; from the principal stress trajectories, it was possible to find the surfaces of maximum shear. The purpose of determining these surfaces is to allow the equilibrium of the soil mass to be investigated by the present theories in soil mechanics; it is to draw an analogy to the analysis of slope stability problems. / Thesis / Master of Engineering (ME)
12

Calibration and Validation of EverFE2.24: A Finite Element Analysis Program for Jointed Plain Concrete Pavements

Fekrat, A. Qaium 16 April 2010 (has links)
No description available.
13

Numerical Analysis of RAP Elements under Dynamic Loading

Saade, Angela Charbel 24 January 2019 (has links)
The 2010-2011 Canterbury, New Zealand, Earthquake Sequence (CES) resulted in 185 fatalities and approximately $NZ40 billion in damage, much of which was due to liquefaction and related phenomena. As a result, an extensive soil improvement field testing program was initiated and Rammed Aggregate Piers� (RAP) were shown to be a feasible method to mitigate the risk from liquefaction during future events. To better design and more fully assess the efficacy of reinforcement techniques against liquefaction, pre- and post-treatment in-situ test data are compiled, to include results from cone penetration tests (CPT), direct-push crosshole tests, and vibroseis (T-Rex) shaking tests. The data are used to evaluate the capabilities of numerical tools to predict the liquefaction response of unimproved and improved sites. A finite difference (FD) numerical model is developed in a FLAC platform and a coupled analysis using the Finn model with Byrne (1991) formulation is conducted. The FD model calibrated for top-down shakings similar to the vibroseis tests succeeded in qualitatively reproducing the general observed behavior without quantitatively matching the in-situ values for shear strains and excess pore pressure ratios. The introduction of the RAP elements to the FD model reduced the shear strain, but slightly overestimated that reduction. Considering more advanced constitutive models that better simulate the complexity of the soil behavior under dynamic loading would likely increase the accuracy of the predicted response. / MS / During earthquakes, a significant loss of strength in soil can occur. This phenomenon, known as liquefaction, can have a devastating impact on the area affected. The 2010-2011 Canterbury, New Zealand, Earthquake Sequence (CES) resulted in 185 fatalities and approximately $NZ40 billion in damage, much of which was due to liquefaction and related phenomena. Consequently, the New Zealand Earthquake Commission implemented a field testing program in order to investigate the efficiency of ground improvement techniques in reducing soil liquefaction potential. One of the tested techniques was Rammed Aggregate Piers™ (RAP) and was shown to be a feasible method in mitigating the risk from liquefaction during future events. The focus of this study is to develop a numerical model capable of predicting the liquefaction response of unimproved and RAP-improved sites. Pre- and post-treatment test data are therefore compiled and used to calibrate the model. The numerical model calibrated for shakings similar to the on-site tests succeeded in qualitatively, but not quantitatively, reproducing the behavior observed in the field. The introduction of the RAP elements to the model revealed an improvement against liquefaction hazard; however, the improvement was overestimated compared to the field results. Considering more advanced numerical features that better simulate the complexity of the soil behavior under dynamic loading would likely increase the accuracy of the predicted response.
14

Quantification of Cumulative Load on the Knee using a Vibration Emission Method

Dorbala, Venkata Navaneeta 28 September 2012 (has links)
Background: Epidemiological studies suggest an increased incidence of osteoarthritis among workers in occupations requiring squat-lifting such as in construction, mining and farming. Squat-lifting postures can induce heavy mechanical loads on the joint, causing the articulating surfaces to deform. This can result in changes of vibration characteristics of the joint surfaces. Differences in the vibration characteristics of normal and pathological joints have been established and used in the past for classifying severity of disease. The purpose of this study was to examine the influence of cumulative mechanical load on the vibration properties of the knee joint and to gain an understanding of how these properties may relate to an increase in cumulative load placed on the joint. Methods: In this study, cumulative load was measured as the resultant knee joint torque during squat lifting, while a piezoelectric accelerometer was used to capture vibration signals from points on the knee during flexion and extension. Twelve university students were recruited for a repeated measures study. Each participant attended one session where they had to perform a series of six squat-lifting tasks on a force platform. Motion capture equipment was used to obtain kinematic data. The cumulative 3-D moment on the joint was calculated using inverse dynamics. Results: A visual inspection of an ensemble average constructed for the frequency spectrum of all participants revealed that differences may exist in the 750 Hz - 2000 Hz bandwidth for vibrations coming from the patella during flexion. Further statistical analysis by a t-test and ANOVA showed a decrease in the RMS power of the signal captured in this bandwidth before and after mechanical load was induced by squat lifting. A linear regression analysis indicated a significant correlation between cumulative 3-D moment on the knee joint and the median frequency of vibration signals from the patella during flexion in the 1000 Hz - 2500 Hz range. Conclusions: Overall, the results of this study indicate the possibility of a relationship between mechanical exposure on the knee joint and its vibration properties during joint movement. Despite the small sample size, a declining trend was observed in the normalized RMS power of signals with increase in loading. However, the quantitative nature of this relationship is not clear and the current study points towards a non-linear relationship between joint exposure and knee vibrations. Future studies must investigate this possibility using direct measures of joint loading, cartilage deformation and their relation to joint vibrations. / Master of Science
15

Mechanical Optimization Of Poly(vinyl Alcohol) Cryogels To Activate Osteochondral Mechanotransduction Pathways

Koch, Meredith Ericson 01 January 2014 (has links)
Tissue engineering and regenerative medicine have emerged as viable approaches to repairing osteochondral tissue damage, especially with the implementation of biomaterials and mesenchymal stem cells (MSCs). Poly(vinyl alcohol) (PVA) is a synthetic and non-biodegradable polymer that has received attention as a tissue engineering scaffold and cartilage replacement due to its inherent viscoelasticity and biocompatibility. This work investigated the use of mechanical cues to trigger mechanotransduction pathways and thereby guide human MSCs towards a desired differentiation lineage. PVA scaffolds with a range of compressive moduli (1 - 600 kPa) were fabricated by varying molecular weight, solution concentration, and freeze-thaw cycles. Mass loss rates and changes in stiffness were not significantly different after 7 days of dynamic compression or static culture in standard MSC culture medium. Short-term dynamic loading of human MSC-seeded PVA scaffolds resulted in an increase in cell viability and collagen production for loaded versus static samples over 7 days of culture. Through a simple dynamic compressive loading sequence MSC viability and matrix protein production may increase on synthetic, bioinert PVA scaffolds. Lastly upstream processing of polymer fabrication and cell culture was conducted in preparation for studies on a custom designed dynamic compressive loading machine for cell-seeded scaffolds.
16

Crack arrest capability of aluminium alloys under dynamic loading / Capacité d'arrêt de fissure dans les alliages d'aluminium sous chargement dynamique

Gunasilan, Manar 16 November 2018 (has links)
Les structures aéronautiques peuvent être soumises à des sollicitations sévères telles que les collisions, les impacts de volatiles, etc … Sous l’effet de ces sollicitations rapides, qui du fait de leurs temps caractéristiques très courts limitent les transferts thermiques, le matériau peut dissiper l’énergie dans des zones de déformation localisée qui peuvent conduire à une ruine prématurée de la structure. Le travail de la thèse porte sur la définition d’une méthodologie expérimentale destinée à étudier les conditions de rupture de matériaux à haute résistance à vocation aéronautique consécutives à un endommagement dynamique. Ce travail comprend : •la mise au point d’essais rapides de cisaillement ; •des observations microstructurales des matériaux avant et après sollicitation ; •la simulation numérique des essais. / Aeronautical structures may be submitted to severe loading such as collisions, bird strike, etc. Under dynamic loading, involving quasi adiabatic conditions, the material may dissipate energy within zones of localised deformation wich may lead to the premature failure of the structure. The PhD work aims at defining an experimental methodology devoted to study the conditions of fracture of aeronautical, high strength materials intervening after dynamic damage. Tasks include notably: * definition of dynamic shear tests * microstructural observation of the material before and after loading * numerical simulation * Development of fracture criterion
17

Language extension via dynamically extensible compilers.

Seefried, Sean, Computer Science & Engineering, Faculty of Engineering, UNSW January 2006 (has links)
This dissertation provides the motivation for and evidence in favour of an approach to language extension via dynamic loading of plug-ins. There is a growing realisation that language features are often a superior choice to software libraries for implementing applications. Among the benefits are increased usability, safety and efficiency. Unfortunately, designing and implementing new languages is difficult and time consuming. Thus, reuse of language infrastructure is an attractive implementation avenue. The central question then becomes, what is the best method to extend languages? Much research has focussed on methods of extension based on using features of the language itself such as macros or reflection. This dissertation focuses on a complementary solution: plug-in compilers. In this approach languages are extended at run-time via dynamic extensions to compilers, called plug-ins. Plug-ins can be used to extend the expressiveness, safety and efficiency of languages. However, a plug-in compiler provides other benefits. Plug-in compilers encourage modularity, lower the barrier of entry to development, and facilitate the distribution and use of experimental language extensions. This dissertation describes how plug-in support is added, to both the front and back-end of a compiler, and demonstrates their application through a pair of case studies.
18

Comparison Of The 2d And 3d Analyses Methods For Cfrds

Ozel, Halil Firat 01 September 2012 (has links) (PDF)
The purpose is to compare the 2D and 3D analysis methodologies in investigating the performance of a Concrete Faced Rockfill Dam (CFRD) under static and dynamic loading conditions. &Ccedil / okal Dam is the case study which is a CFRD located in northwest Turkey at the Thracian Peninsula. Rockfill interface and faceplate were simulated as nonlinear modulus of elasticity, detailed nonlinear tractive behavior and total strain rotating crack model, respectively. These behaviors were calibrated to define the exact behavior by detailed material tests. The analyses that cannot be done by 2D analyses, such as stress, crack width distribution along the face slab are conducted by 3D analyses to determine the necessity of these outcomes. Since effect of valley ends cannot be produced by 2D analyses, it is necessary to check 3D analyses to ensure liability of the results. Another comparison between detailed analysis of 2D models and linear elastic 2D models were covered to get practical and industrial solutions for the guiding methods of CFRDs for preliminary designs in this study.
19

Performance of Support Systems Subjected to Dynamic Loads at Two Underground Nickel Mines

Liang, Grace Ya Chih 23 July 2012 (has links)
The consequences of mine seismicity can be mitigated by installing support systems capable of absorbing the energy generated by seismic events. Recent work has focused on the testing of individual support or reinforcement units under laboratory impact loads; this, however, does not render itself to easy extrapolation to field conditions. Hence, this thesis focuses on improving the understanding of the performance of support systems in real-world applications through passive monitoring of past rockburst events. 14 years of rockburst history were collected from Coleman Mine and Copper Cliff Mine, two of Vale’s underground (nickel) operations in Sudbury Ontario. Statistical analysis, principal component analysis (PCA) and partial least square projection (PLS) were utilized to find relation between collected parameters and performance capacity. This thesis discusses the adequacy of various support systems and investigates the validity of perceived support performance as compared to the actual performance based on analyses of field data.
20

Performance of Support Systems Subjected to Dynamic Loads at Two Underground Nickel Mines

Liang, Grace Ya Chih 23 July 2012 (has links)
The consequences of mine seismicity can be mitigated by installing support systems capable of absorbing the energy generated by seismic events. Recent work has focused on the testing of individual support or reinforcement units under laboratory impact loads; this, however, does not render itself to easy extrapolation to field conditions. Hence, this thesis focuses on improving the understanding of the performance of support systems in real-world applications through passive monitoring of past rockburst events. 14 years of rockburst history were collected from Coleman Mine and Copper Cliff Mine, two of Vale’s underground (nickel) operations in Sudbury Ontario. Statistical analysis, principal component analysis (PCA) and partial least square projection (PLS) were utilized to find relation between collected parameters and performance capacity. This thesis discusses the adequacy of various support systems and investigates the validity of perceived support performance as compared to the actual performance based on analyses of field data.

Page generated in 0.0665 seconds