• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 3
  • Tagged with
  • 16
  • 16
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Previsão de médio prazo do consumo de energia elétrica no Brasil: estimação via metodologia box & jenkins e regressão dinâmica

Dias, Eduardo Dessupoio Moreira 29 February 2008 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-10-13T13:49:58Z No. of bitstreams: 1 eduardodessupoiomoreiradias.pdf: 568521 bytes, checksum: c10ad96e85dfa6ce7e0e40283959ac29 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-10-22T12:56:13Z (GMT) No. of bitstreams: 1 eduardodessupoiomoreiradias.pdf: 568521 bytes, checksum: c10ad96e85dfa6ce7e0e40283959ac29 (MD5) / Made available in DSpace on 2016-10-22T12:56:14Z (GMT). No. of bitstreams: 1 eduardodessupoiomoreiradias.pdf: 568521 bytes, checksum: c10ad96e85dfa6ce7e0e40283959ac29 (MD5) Previous issue date: 2008-02-29 / O objetivo principal desta dissertação é estimar um modelo para a previsão mensal do consumo de energia elétrica no Brasil. Foi utilizada na construção do modelo uma estratégia bottom-up, ou seja, inicialmente, com o uso da metodologia Box & Jenkins, estimou-se um modelo simples auto-projetivo que pudesse fornecer informações sobre o comportamento da série em questão. Num segundo momento, estimou-se um modelo de regressão dinâmica, onde se procurou relacionar o consumo de energia elétrica no país com outras possíveis variáveis causais. Nesta dissertação também é feito um estudo sobre a evolução do setor elétrico no Brasil, enfatizando-se as reformas ocorridas em meados dos anos 1990, o que deu origem ao chamado “novíssimo” modelo institucional do setor elétrico brasileiro. Com a metodologia Box & Jenkins, foi encontrado um modelo SARIMA (0,1,0) x (1,0,0)12 e o modelo de regressão dinâmica indicou que o consumo de energia elétrica no Brasil está relacionado, dentre outros fatores, ao nível de atividade econômica do país. Por fim, foram feitos testes dentro e fora da amostra, com o objetivo de comparar os modelos obtidos, e projeções de consumo para os meses do ano de 2008. / The main point of this dissertation is to find a monthly forecasting model to the Brazilian of electric energy consumption. The methodology consists of the construction of a model using a buttom-up strategy. In other words, it was first adjusted a Box & Jenkins model; i.e., a simple univariate model that could give information about the behavior of the series. Then, a dynamic regression model was fitted which relates brazilian electric energy consumption to all possible explanatory variable. In this dissertation, it was also carried out a study of the Brazilian electricity sector evolution, emphasizing the changes occurred in the nineties, that originated the so called “brand new” institutional model of the Brazilian electricity sector. By mean of the Box & Jenkins method, a SARIMA model (0,1,0) X (1,0,0)12 was found, and the dynamic regression model shows that the consumption of electricity in Brazil is related, among others factors, to the level of the economic activities in the country. Finally, tests in and out of sample were made, with the objective of comparing the obtained models, and the monthly forecasts for the 2008 months were produced by the selected model.
12

[pt] MODELAGEM PARA AVALIAÇÃO DOS ALÍVIOS CRÍTICOS EM PLATAFORMAS DE PETRÓLEO / [en] MODELING FOR THE ASSESSMENT OF CRITICAL OFFLOADINGS ON OIL PLATFORMS

SILVIA HELENA FERRARO 27 July 2021 (has links)
[pt] A crescente produção de petróleo em águas brasileiras torna cada vez mais importante a gestão logística de alívios das plataformas produtoras. A programação de alívios das plataformas deve ser realizada de forma antecipativa, evitando a parada de produção por falta de espaço disponível para armazenagem. Uma interrupção da produção de petróleo, por menor que seja, causa uma perda direta de receita para a empresa produtora. Alívios realizados muito próximos ao completo enchimento de todos os tanques da plataforma representam risco iminente de perda de produção e são denominados alívios críticos. Este trabalho tem como objetivo realizar um estudo estatístico com dados históricos de 2016 a 2019 para criar um modelo multivariado de previsão dos alívios críticos em uma grande empresa de petróleo brasileira. O modelo de regressão dinâmica foi utilizado para avaliar como as variáveis presentes no processo de programação de alívios se relacionam com o percentual mensal de alívios críticos. A partir do modelo gerado foram identificadas que as variáveis de produção mensal, estoque médio, previsão do tempo, lote médio e exportações mensais impactam no percentual de alívios críticos do mês. Foi realizada uma análise de sensibilidade, a partir da qual foi possível concluir que a gestão de estoques da empresa é o fator fundamental para a redução dos alívios críticos e consequentemente a redução das chances de perda de produção. / [en] The growing oil production in Brazilian waters makes the logistic management of offloadings from the platforms increasingly important. The platform offloading schedule must be carried out in advance, avoiding production stoppage due to lack of available storage space. An interruption in oil production, however small, causes a direct revenue loss for the producing company. Offloadings performed very close to the complete filling of all the platform tanks represent an imminent loss of production risk and are called critical offloadings. This work aims to carry out a statistical study with historical data from 2016 to 2019 to create a multivariate model for forecasting critical offloadings in a large Brazilian oil company. The dynamic regression model was used to evaluate how the variables present in the offloading scheduling process are related to the monthly percentage of critical offloadings. From the developed model, it was identified that the variables of monthly production, average stock, weather forecast, average batch and monthly exports impact the percentage of critical offloadings of the month. A sensitivity analysis was carried out, from which it was possible to conclude that the company s inventory management is the fundamental factor for the reduction of critical offloadings and, consequently, the reduction of the chances of production loss.
13

En statistisk analys av islastens effekt på en dammkonstruktion / A statistical analysis of the ice loads effect on a dam structure

Klasson Svensson, Emil, Persson, Anton January 2016 (has links)
En damm används i huvudsak för att magasinera vatten i energiutvinningssyfte. Dammen rör sig fram och tillbaka i ett säsongsmönster mestadels beroende på skillnader i utomhustemperatur och vattentemperaturen i magasinet. Det nordiska klimatet innebär risk för isläggning i magasinet, för vilken lasten är relativt outforskad. Denna rapport syftar till ett med multipla linjära regressionsmodeller samt dynamiska regressionsmodeller avgöra vilka variabler som förklarar en specifik svensk dammkonstruktions rörelse. Dammens rörelse mäts genom att mäta dammens förflyttning kontra berggrunden med data från dammens inverterade pendlar. Av särskilt intresse är att avgöra islastens påverkan på rörelsen. Resultaten visar att multipla linjära regressions-modeller inte fullständigt lyckas modellera dammens rörelse, då de har problem med autokorrelerade residualer. Detta hanteras med hjälp av autoregressiva regressionsmodeller där de initiala förklarande variablerna inkluderas, kallat dynamisk regression. Denna rapports resultat visar att de autoregressiva parametrarna fungerar mycket väl för att förklara pendlarna, men att även tid, temperatur, det hydrostatiska trycket samt istjocklek är användbara förklarande variabler. Istjockleken visar signifikant påverkan på 5 % signifikansnivå på två av de undersökta pendlarna, vilket är ett noterbart resultat. Författarna menar att rapportens resultat indikerar att det finns anledning att fortsätta forska kring islastens påverkan på dammkonstruktioner. / A dam is a structure mainly used for storing water and generating electricity. The structure of a dam moves in a season-based pattern, mainly because of the difference in temperature between the air on outside of the dam and the water on the inside. Due to the Nordic climate, occurrences of icing on the water in the basin is fairly frequent. The effects of ice on the structural load of the dam are relatively unexplored and are the subject to this bachelor’s thesis. The goal of this project is to evaluate which predictors are significant to the movement of the dam with multiple linear regression models and dynamic regressions. The movement is measured by inverted pendulums that register the dam’s movement compared to the foundation. It is of particular interest to determine if the ice load influences the movement of the dam. The multiple regression models used to explain the dam’s movement were all discarded due to autocorrelation in the residuals. This falsifies the models, since autocorrelation means that they don’t meet the needed assumptions. To counteract the autocorrelation, dynamic models with autoregressive terms were fitted. These models showed no problem with autocorrelation. The result from the dynamic models were successful and managed to significantly explain the movement of the dam. The autoregressive terms proved to be efficient explanatory variables. The dynamic regression models also show that the time, temperature, hydrostatic pressure and ice thickness variables are also useful explanatory variables. The ice thickness shows a significant effect at the 5 % significance level on two of the investigated pendulums. The report's results indicate that there is reason to continue research on the ice load impact on dam constructions.
14

Developments in statistics applied to hydrometeorology : imputation of streamflow data and semiparametric precipitation modeling / Développements en statistiques appliquées à l'hydrométéorologie : imputation de données de débit et modélisation semi-paramétrique de la précipitation

Tencaliec, Patricia 01 February 2017 (has links)
Les précipitations et les débits des cours d'eau constituent les deux variables hydrométéorologiques les plus importantes pour l'analyse des bassins versants. Ils fournissent des informations fondamentales pour la gestion intégrée des ressources en eau, telles que l’approvisionnement en eau potable, l'hydroélectricité, les prévisions d'inondations ou de sécheresses ou les systèmes d'irrigation.Dans cette thèse de doctorat sont abordés deux problèmes distincts. Le premier prend sa source dans l’étude des débits des cours d’eau. Dans le but de bien caractériser le comportement global d'un bassin versant, de longues séries temporelles de débit couvrant plusieurs dizaines d'années sont nécessaires. Cependant les données manquantes constatées dans les séries représentent une perte d'information et de fiabilité, et peuvent entraîner une interprétation erronée des caractéristiques statistiques des données. La méthode que nous proposons pour aborder le problème de l'imputation des débits se base sur des modèles de régression dynamique (DRM), plus spécifiquement, une régression linéaire multiple couplée à une modélisation des résidus de type ARIMA. Contrairement aux études antérieures portant sur l'inclusion de variables explicatives multiples ou la modélisation des résidus à partir d'une régression linéaire simple, l'utilisation des DRMs permet de prendre en compte les deux aspects. Nous appliquons cette méthode pour reconstruire les données journalières de débit à huit stations situées dans le bassin versant de la Durance (France), sur une période de 107 ans. En appliquant la méthode proposée, nous parvenons à reconstituer les débits sans utiliser d'autres variables explicatives. Nous comparons les résultats de notre modèle avec ceux obtenus à partir d'un modèle complexe basé sur les analogues et la modélisation hydrologique et d'une approche basée sur le plus proche voisin. Dans la majorité des cas, les DRMs montrent une meilleure performance lors de la reconstitution de périodes de données manquantes de tailles différentes, dans certains cas pouvant allant jusqu'à 20 ans.Le deuxième problème que nous considérons dans cette thèse concerne la modélisation statistique des quantités de précipitations. La recherche dans ce domaine est actuellement très active car la distribution des précipitations exhibe une queue supérieure lourde et, au début de cette thèse, il n'existait aucune méthode satisfaisante permettant de modéliser toute la gamme des précipitations. Récemment, une nouvelle classe de distribution paramétrique, appelée distribution généralisée de Pareto étendue (EGPD), a été développée dans ce but. Cette distribution exhibe une meilleure performance, mais elle manque de flexibilité pour modéliser la partie centrale de la distribution. Dans le but d’améliorer la flexibilité, nous développons, deux nouveaux modèles reposant sur des méthodes semiparamétriques.Le premier estimateur développé transforme d'abord les données avec la distribution cumulative EGPD puis estime la densité des données transformées en appliquant un estimateur nonparamétrique par noyau. Nous comparons les résultats de la méthode proposée avec ceux obtenus en appliquant la distribution EGPD paramétrique sur plusieurs simulations, ainsi que sur deux séries de précipitations au sud-est de la France. Les résultats montrent que la méthode proposée se comporte mieux que l'EGPD, l’erreur absolue moyenne intégrée (MIAE) de la densité étant dans tous les cas presque deux fois inférieure.Le deuxième modèle considère une distribution EGPD semiparamétrique basée sur les polynômes de Bernstein. Plus précisément, nous utilisons un mélange creuse de densités béta. De même, nous comparons nos résultats avec ceux obtenus par la distribution EGPD paramétrique sur des jeux de données simulés et réels. Comme précédemment, le MIAE de la densité est considérablement réduit, cet effet étant encore plus évident à mesure que la taille de l'échantillon augmente. / Precipitation and streamflow are the two most important meteorological and hydrological variables when analyzing river watersheds. They provide fundamental insights for water resources management, design, or planning, such as urban water supplies, hydropower, forecast of flood or droughts events, or irrigation systems for agriculture.In this PhD thesis we approach two different problems. The first one originates from the study of observed streamflow data. In order to properly characterize the overall behavior of a watershed, long datasets spanning tens of years are needed. However, the quality of the measurement dataset decreases the further we go back in time, and blocks of data of different lengths are missing from the dataset. These missing intervals represent a loss of information and can cause erroneous summary data interpretation or unreliable scientific analysis.The method that we propose for approaching the problem of streamflow imputation is based on dynamic regression models (DRMs), more specifically, a multiple linear regression with ARIMA residual modeling. Unlike previous studies that address either the inclusion of multiple explanatory variables or the modeling of the residuals from a simple linear regression, the use of DRMs allows to take into account both aspects. We apply this method for reconstructing the data of eight stations situated in the Durance watershed in the south-east of France, each containing daily streamflow measurements over a period of 107 years. By applying the proposed method, we manage to reconstruct the data without making use of additional variables, like other models require. We compare the results of our model with the ones obtained from a complex approach based on analogs coupled to a hydrological model and a nearest-neighbor approach, respectively. In the majority of cases, DRMs show an increased performance when reconstructing missing values blocks of various lengths, in some of the cases ranging up to 20 years.The second problem that we approach in this PhD thesis addresses the statistical modeling of precipitation amounts. The research area regarding this topic is currently very active as the distribution of precipitation is a heavy-tailed one, and at the moment, there is no general method for modeling the entire range of data with high performance. Recently, in order to propose a method that models the full-range precipitation amounts, a new class of distribution called extended generalized Pareto distribution (EGPD) was introduced, specifically with focus on the EGPD models based on parametric families. These models provide an improved performance when compared to previously proposed distributions, however, they lack flexibility in modeling the bulk of the distribution. We want to improve, through, this aspect by proposing in the second part of the thesis, two new models relying on semiparametric methods.The first method that we develop is the transformed kernel estimator based on the EGPD transformation. That is, we propose an estimator obtained by, first, transforming the data with the EGPD cdf, and then, estimating the density of the transformed data by applying a nonparametric kernel density estimator. We compare the results of the proposed method with the ones obtained by applying EGPD on several simulated scenarios, as well as on two precipitation datasets from south-east of France. The results show that the proposed method behaves better than parametric EGPD, the MIAE of the density being in all the cases almost twice as small.A second approach consists of a new model from the general EGPD class, i.e., we consider a semiparametric EGPD based on Bernstein polynomials, more specifically, we use a sparse mixture of beta densities. Once again, we compare our results with the ones obtained by EGPD on both simulated and real datasets. As before, the MIAE of the density is considerably reduced, this effect being even more obvious as the sample size increases.
15

[en] USING LINEAR AND NON-LINEAR APPROACHES TO MODEL THE BRAZILIAN ELECTRICITY SPOT PRICE SERIES / [pt] MODELOS LINEARES E NÃO LINEARES NA MODELAGEM DO PREÇO SPOT DE ENERGIA ELÉTRICA DO BRASIL

LUIZ FELIPE MOREIRA DO AMARAL 17 July 2003 (has links)
[pt] Nesta dissertação, estratégias de modelagem são apresentadas envolvendo modelos de séries temporais lineares e não lineares para modelar a série do preço spot no mercado elétrico brasileiro. Foram usados, dentre os lineares, os modelos ARIMA(p,d,q) proposto por Box, Jenkins e Reinsel (1994) e os modelos de regressão dinâmica. Dentre os não lineares, o modelo escolhido foi o STAR desenvolvido, inicialmente, por Chan e Tong (1986) e, posteriormente, por Teräsvista (1994). Para este modelo, testes do tipo Multiplicador de Lagrange foram usados para testar linearidade, bem como para avaliar os modelos estimados. Além disso, foi também utilizada uma proposta para os valores iniciais do algoritmo de otimização, desenvolvido por Franses e Dijk (2000). Estimativas do filtro de Kalman suavizado foram usadas para substituir os valores da série de preço durante o racionamento de energia ocorrido no Brasil. / [en] In this dissertation, modeling strategies are presented involving linear and non-linear time series models to model the spot price of Brazil s electrical energy market. It has been used, among the linear models, the modeling approach of Box, Jenkins and Reinsel (1994) i.e., ARIMA(p,d,q) models, and dynamic regression. Among the non-linear ones, the chosen model was the STAR developed, initially, by Chan and Tong (1986) and, later, by Teräsvirta (1994). For this model, the Lagrange Multipliers test, to measure the degree of non linearity of the series , as well as to evaluate the estimated model was used. Moreover, it was also used a proposal for the initial values of the optimization algorithm, developed by Franses and Dijk (2000). The smoothed Kalman filter estimates were used in order to provide values for the spot price series during the energy shortage period.
16

Les modèles de régression dynamique et leurs applications en analyse de survie et fiabilité / Dynamic regression models and their applications in survival and reliability analysis

Tran, Xuan Quang 26 September 2014 (has links)
Cette thèse a été conçu pour explorer les modèles dynamiques de régression, d’évaluer les inférences statistiques pour l’analyse des données de survie et de fiabilité. Ces modèles de régression dynamiques que nous avons considérés, y compris le modèle des hasards proportionnels paramétriques et celui de la vie accélérée avec les variables qui peut-être dépendent du temps. Nous avons discuté des problèmes suivants dans cette thèse.Nous avons présenté tout d’abord une statistique de test du chi-deux généraliséeY2nquiest adaptative pour les données de survie et fiabilité en présence de trois cas, complètes,censurées à droite et censurées à droite avec les covariables. Nous avons présenté en détailla forme pratique deY2nstatistique en analyse des données de survie. Ensuite, nous avons considéré deux modèles paramétriques très flexibles, d’évaluer les significations statistiques pour ces modèles proposées en utilisantY2nstatistique. Ces modèles incluent du modèle de vie accélérés (AFT) et celui de hasards proportionnels (PH) basés sur la distribution de Hypertabastic. Ces deux modèles sont proposés pour étudier la distribution de l’analyse de la duré de survie en comparaison avec d’autre modèles paramétriques. Nous avons validé ces modèles paramétriques en utilisantY2n. Les études de simulation ont été conçus.Dans le dernier chapitre, nous avons proposé les applications de ces modèles paramétriques à trois données de bio-médicale. Le premier a été fait les données étendues des temps de rémission des patients de leucémie aiguë qui ont été proposées par Freireich et al. sur la comparaison de deux groupes de traitement avec des informations supplémentaires sur les log du blanc du nombre de globules. Elle a montré que le modèle Hypertabastic AFT est un modèle précis pour ces données. Le second a été fait sur l’étude de tumeur cérébrale avec les patients de gliome malin, ont été proposées par Sauerbrei & Schumacher. Elle a montré que le meilleur modèle est Hypertabastic PH à l’ajout de cinq variables de signification. La troisième demande a été faite sur les données de Semenova & Bitukov, à concernant les patients de myélome multiple. Nous n’avons pas proposé un modèle exactement pour ces données. En raison de cela était les intersections de temps de survie.Par conséquent, nous vous conseillons d’utiliser un autre modèle dynamique que le modèle de la Simple Cross-Effect à installer ces données. / This thesis was designed to explore the dynamic regression models, assessing the sta-tistical inference for the survival and reliability data analysis. These dynamic regressionmodels that we have been considered including the parametric proportional hazards andaccelerated failure time models contain the possibly time-dependent covariates. We dis-cussed the following problems in this thesis.At first, we presented a generalized chi-squared test statisticsY2nthat is a convenient tofit the survival and reliability data analysis in presence of three cases: complete, censoredand censored with covariates. We described in detail the theory and the mechanism to usedofY2ntest statistic in the survival and reliability data analysis. Next, we considered theflexible parametric models, evaluating the statistical significance of them by usingY2nandlog-likelihood test statistics. These parametric models include the accelerated failure time(AFT) and a proportional hazards (PH) models based on the Hypertabastic distribution.These two models are proposed to investigate the distribution of the survival and reliabilitydata in comparison with some other parametric models. The simulation studies were de-signed, to demonstrate the asymptotically normally distributed of the maximum likelihood estimators of Hypertabastic’s parameter, to validate of the asymptotically property of Y2n test statistic for Hypertabastic distribution when the right censoring probability equal 0% and 20%.n the last chapter, we applied those two parametric models above to three scenes ofthe real-life data. The first one was done the data set given by Freireich et al. on thecomparison of two treatment groups with additional information about log white blood cellcount, to test the ability of a therapy to prolong the remission times of the acute leukemiapatients. It showed that Hypertabastic AFT model is an accurate model for this dataset.The second one was done on the brain tumour study with malignant glioma patients, givenby Sauerbrei & Schumacher. It showed that the best model is Hypertabastic PH onadding five significance covariates. The third application was done on the data set given by Semenova & Bitukov on the survival times of the multiple myeloma patients. We did not propose an exactly model for this dataset. Because of that was an existing oneintersection of survival times. We, therefore, suggest fitting other dynamic model as SimpleCross-Effect model for this dataset.

Page generated in 0.0712 seconds