Spelling suggestions: "subject:"cynamic strain aging"" "subject:"clynamic strain aging""
1 |
Effect of temperature on mechanical response of austenitic materialsCalmunger, Mattias January 2011 (has links)
Global increase in energy consumption and global warming require more energy production but less CO2emission. Increase in efficiency of energy production is an effective way for this purpose. This can be reached by increasing boiler temperature and pressure in a biomass power plant. By increasing material temperature 50°C, the efficiency in biomass power plants can be increased significantly and the CO2emission can be greatly reduced. However, the materials used for future biomass power plants with higher temperature require improved properties. Austenitic stainless steels are used in most biomass power plants. In austenitic stainless steels a phenomenon called dynamic strain aging (DSA), can occur in the operating temperature range for biomass power plants. DSA is an effect of interaction between moving dislocations and solute atoms and occurs during deformation at certain temperatures. An investigation of DSA influences on ductility in austenitic stainless steels and nickel base alloys have been done. Tensile tests at room temperature up to 700°C and scanning electron microscope investigations have been used. Tensile tests revealed that ductility increases with increased temperature for some materials when for others the ductility decreases. This is, probably due to formation of twins. Increased stacking fault energy (SFE) gives increased amount of twins and high nickel content gives a higher SFE. Deformation mechanisms observed in the microstructure are glide bands (or deformations band), twins, dislocation cells and shear bands. Damage due to DSA can probably be related to intersection between glide bands or twins, see figure 6 a). Broken particles and voids are damage mechanisms observed in the microstructure.
|
2 |
Comportement mécanique et rupture des aciers au C-Mn en présence de vieillissement dynamique / Mechanical behavior and fracture of the C-Mn steels in the presence of dynamic strain agingWang, Huaidong 18 May 2011 (has links)
Le vieillissement dynamique se manifeste en particulier par le phénomène de Portevin-Le Chatelier (PLC). Il se produit dans les aciers aux environs de 200°C pour des sollicitations quasi-statiques. Dans les aciers au C-Mn, il conduit à une chute de ductilité et de ténacité qui doit être prise en compte dans le dimensionnement des structures de sûreté. L’objectif de la thèse consiste à modéliser le comportement mécanique des aciers au C-Mn en tenant compte du vieillissement dynamique et à prédire leur rupture ductile en présence de ce phénomène. Le comportement mécanique du matériau étudié, un acier au C-Mn, a été caractérisé par des essais de traction simple. Le modèle KEMC implémenté dans le code de calculs par éléments finis Zébulon, a été identifié sur ces essais : l’effet de Portevin Le-Chatelier (PLC) a été correctement simulé sur les éprouvettes lisses, entaillées et CT. Nous avons montré l’importance des conditions aux limites dans la manifestation du PLC. Pour la rupture ductile, l’application du critère de Rice et Tracey (identifié à 20°C) sur les éprouvettes entaillées AE4 montre que la prise en compte du vieillissement dynamique dans le comportement ne suffit pas pour avoir une bonne prédiction de la rupture. Des études micromécaniques de croissance de cavité indiquent que les localisations de PLC peuvent favoriser la croissance et la coalescence de cavité. L’écrouissage apparent, qui dépend du durcissement par la déformation mais aussi du durcissement provenant du vieillissement dynamique, modifie la vitesse de croissance de cavité, mais pas le taux critique de croissance de cavité. On identifie une loi d’endommagement dont les paramètres dépendent de la température à partir des calculs micromécaniques. Le nouveau modèle donne une meilleure prédiction que le modèle de Rice et Tracey sur les éprouvettes entaillées AE4 et a permis de prédire un creux de ténacité sur les éprouvettes CT. Pour améliorer les prédictions, la loi d’endommagement doit dépendre de la vitesse de déformation. / The dynamic strain aging is manifested especially by the Portevin-Le Chatelier (PLC) phenomenon. It appears in steels around 200°C at quasi static solicitation conditions. In C-Mn steels, it leads to a drop of ductility and of toughness which should be taken into account in the design of safety structures. The thesis aims to model the mechanical behavior of the C-Mn steels taking into account the dynamic strain aging and to predict the ductile fracture of these steels in the presence of the phenomenon. The mechanical behavior of the material studied, a C-Mn steel, was characterized using tensile tests. The KEMC model, which was implemented in the Finite Element program Zébulon, was identified using these tests: the Portevin-Le Chatelier (PLC) effect was correctly simulated on the tensile specimens, the notched specimens and the CT specimens. We showed the importance of boundary conditions in the occurrence of the PLC effect. As far as the ductile fracture is concerned, the application of the Rice and Tracey’s criterion (identified at 20°C) on the notched specimens AE4 showed that the consideration of the dynamic strain aging in the behavior was insufficient to give a good prediction of the fracture. Micromechanical studies of the growth of voids showed that PLC localizations can facilitate the growth and the coalescence of voids. The nominal strain hardening, which depends on the strain hardening and the hardening due to the dynamic strain aging, does not modify the critic growth ratio of voids but the growth rate of voids. We identified a damage model using micromechanical simulations. The parameters of this damage model depend on temperature. The new model gave a better prediction than the Rice and Tracey model on the notched specimens AE4 and it also allowed predicting the drop of toughness on the CT specimens. To improve the prediction of fracture, le damage law must depend on strain rate.
|
3 |
Comportement et rupture d’un acier au C-Mn en présence de vieillissement sous déformation / Behavior and rupture of a C- Mn steel in the presence of aging under strainBelotteau, Jeanne 21 January 2009 (has links)
Les aciers de construction au carbone manganèse (C-Mn) sont largement utilisés pour diverses applications mécaniques, et en particulier pour les tuyauteries de circuit secondaire des centrales nucléaires de type Réacteurs à Eau sous Pression (REP). La robustesse des composants des circuits sous pression des REP vis-à-vis de la fissuration doit être démontrée, tant au niveau de la conception que de l’exploitation. Les aciers au C-Mn sont sensibles au vieillissement sous déformation qui entraîne une chute importante de ductilité et de ténacité entre 150 et 350°C,températures de service des tuyauteries du circuit secondaire. Ce phénomène est dû à une interaction entre les atomes de solutés et les dislocations, et peut se traduire entre autres par une sensibilité négative de la contrainte à la vitesse de déformation, et des localisations de la déformation plastique (Lüders, Portevin – Le Chatelier). L’origine physique du vieillissement sous déformation a été beaucoup étudiée, surtout dans les métaux purs, en relation avec le phénomène Portevin-Le Chatelier (PLC), mais son influence sur les propriétés mécaniques et notamment la rupture reste très controversée. L’objectif de la thèse est de modéliser le comportement et la rupture d’un acier au C-Mn dans un large domaine de température compris entre 20 et 350°C, en tenant compte des phénomènes de vieillissement sous déformation, et en particulier des localisations de déformation. Le comportement et la rupture de l’acier au C-Mn étudié ont été caractérisés expérimentalement dans le domaine 20-350°C à l’aide d’essais de traction sur éprouvettes lisses, sur éprouvettes axisymétriques entaillées, et d’essais de déchirure sur éprouvettes CT. Le modèle d’Estrin Kubin McCormick, prenant en compte le vieillissement sous déformation, a été identifié dans cette même gamme de température et la plupart des effets du vieillissement sous déformation ont pu être simulés numériquement : sensibilité négative de la contrainte d’écoulement à la vitesse de déformation, bandes de Lüders, effet PLC, modification des propriétés mécaniques de traction… Le modèle ainsi identifié a été appliqué à l’étude de la rupture d’éprouvettes lisses, entaillées et CT. La baisse de l’allongement réparti est bien décrite en traction sur éprouvettes lisses. Pour prévoir la rupture des éprouvettes entaillées, l’approche locale de la rupture a été appliquée (modèle de Rice et Tracey). Cette étude a donc permis de disposer d’un modèle prenant en compte le vieillissement sous déformation de 20°C à 350°C et décrivant les localisations de déformation plastique de type Lüdersou PLC, pour différentes géométries d’éprouvettes. Ce modèle a été utilisé pour simuler la rupture des aciers au C-Mn, suscitant ainsi une vision nouvelle pour comprendre la baisse de ductilité associée au vieillissement dynamique. / Pas de résumé en anglais disponible.
|
4 |
Endommagement des aciers au C-Mn en fatigue oligocyclique et gigacyclique / Carbon-Manganese steels' damage mechanics in Low Cycle Fatigue and Very High Cycle FatigueHuang, Zhiyong 01 July 2010 (has links)
Dans les générateurs de vapeur des centrales nucléaires à eau pressurisée, les tuyauteries sont soumises à des chargements thermique et mécanique, qui sont variables et divisés en deux régimes différents : la fatigue oligocyclique et la fatigue gigacyclique. Les aciers au carbone – manganèse, type A42, A48 et Tu48 (normes françaises) sont souvent utilisés dans de telles applications. Les propriétés du matériau manifestent certains caractères spéciaux en mécanique et métallurgie comme le vieillissement dynamique conduisant à une augmentation de la valeur de la contrainte maximale et une diminution de la ductilité à la température 200 ℃. Le comportement en fatigue oligocyclique et gigacyclique sont étudiés à température ambiante et 200 ℃. Des essais de fatigue cumulée ont été mis en oeuvre pour étudier l’effet du cumul de dommage combinant des cycles de fatigue oligocyclique suivis de cycles en fatigue gigacyclique. Tous les résultats sont analysés en utilisant la mécanique de l’endommagement des milieux continus et l’analyse microfractographique. Les cycles d’hystérésis en fatigue oligocyclique sont dus à la déformation plastique de durcissement cinématique, ils peuvent être décrits par sous le modèle d’Armstrong – Frederick ; le durcissement isotrope est utile pour prédire l’évolution de l’amplitude de contrainte. Mais avec l’augmentation de la déformation plastique accumulée, le dommage ne peut être négligé. Le modèle de Chaboche d’endommagement par fatigue est utilisé pour décrire l’évolution des dommages oligocyclique et il est étendu au régime gigacyclique. Un modèle de fatigue cumulée des dommages a été développé à partir du modèle de Chaboche et appliqué à l’estimation des dommages de fatigue pour décrire le comportement de l’évolution de la contrainte en fonction du nombre de cycles. En fatigue oligocyclique à la température de 200 ℃, l’acier A48 est sensible au phénomène de vieillissement dynamique et il apparaît un durcissement secondaire, qui peut être prédit par la théorie des dislocations et est simulé dans la thése. L’analyse des surfaces de rupture est effectuée par fractographie au Microscope Electronique à Balayage pour les essais en oligocyclique, gigacyclique et cumul. En fatigue oligocylique, la fissure est initiée en surface. En fatigue gigacyclique, certaines fissures sont initiées sur des inclusions situées à l’intérieur d’éprouvettes. / In steam generators of nuclear power plants, typical pipes components are subjected to thermal and mechanical loading which are variable and divided into two different regimes: low cycle fatigue and gigacycle fatigue. Carbon-manganese steels A42, A48 and Tu48 steels (French standards) are often used in such applications. The material properties manifest some special characters in mechanics and metallurgy such as Dynamic Strain Aging, increasing UTS values in 200℃ temperature domain. The LCF and VHCF behaviors are investigated respectively by test method at room temperature and 200℃. The cumulative fatigue tests are implemented through referencing the load as prior LCF following gigacycle fatigue from the steam generator pipes thermal loads in order to obtain the performance of material under accumulated fatigue damage. All the test results are analyzed by using plastic mechanics, continuums damage mechanics and microscopic analysis. Hysteresis loops are due to plastic deformation in LCF which is the effect of kinematic hardening and they can be described by Armstrong – Frederick form models; the isotropy hardening is used to predict the evolution of stress amplitude in LCF. But with rising of accumulated plastic deformation, the damage can not be neglected. The Chaboche fatigue damage model is applied to describe the damage evolution of LCF and extended to VHCF regime. The cumulative fatigue damage model is extended from Chaboche model and applies to the estimation cumulative fatigue damage. The constitutive relationship and isotropy rule are coupled with fatigue damage model that can describe the whole fatigue behavior. In 200℃ for LCF, A48 is sensitive to dynamic strain aging and its secondary hardening behavior is important which can be predicted by dislocation theory and is simulated in the paper. The fractographic analysis is performed by SEM for LCF, VHCF and cumulative fatigue tests. The LCF crack is initiated in surface. Some of cracks of VHCF are given birth from the inclusions located at interior of sample.
|
5 |
Analyse multi-échelles de la viscoplasticité à froid et de la rupture différée du titane en relation avec ses teneurs en hydrogène et oxygène. / Multiscale investigation of room-temperature viscoplasticity and sustained load cracking of Titanium. Influence of hydrogen and oxygen content.Marchenko, Arina 23 November 2015 (has links)
Le titane et ses alliages qui sont largement répandus dans l'industrie aéronautique, sont concernés par le fluage à température ambiante ce qui conduit à une réduction de la résistance et provoque le phénomène de rupture différée. Une partie des études montrent que ce comportement viscoplastique inhabituel à température ambiante est lié aux phénomènes d'interactions entre les dislocations et les atomes interstitiels comme l'hydrogène et l'oxygène, aussi appelés vieillissement statique et dynamique. Le but de cette étude à la fois expérimentale et numérique multi-échelle est de mieux comprendre les effets souvent antagonistes et en partie couplés de l'oxygène et de l'hydrogène en solution sur le comportement viscoplastique du titane non-allié de phase alpha. Dans un premier volet, un scénario du vieillissement statique et dynamique dans le titane non-allié de phase alpha est proposé. La présence du pic de traction est attribuée à la ségrégation des atomes interstitiels d'oxygène sur les dislocations coin de vecteur de Burgers <c+a>. Dans le cas du vieillissement dynamique les instabilités observées, typiques de l'effet Portevin-Le Chatelier, sont associées à l'étalement du cœur non planaire des dislocations vis de vecteur de Burgers <a>. Une loi de comportement prenant en compte les effets liés aux interactions entre dislocations et atomes en solution a été développée. Le modèle de Kubin-Estrin-McCormick qui permet de prendre en compte l'effet du vieillissement a été étendu au cas de la plasticité cristalline. Les simulations par éléments finis ont été réalisées sur des agrégats polycristallins avec différents nombres de grains. Ensuite, les essais de fissuration (ténacité et rupture différée) ont été réalisés sur les matériaux bruts, et chargés en hydrogène. Enfin, des simulations numériques de la rupture de ces éprouvettes ont été réalisées pour toutes les conditions expérimentales testées en utilisant le modèle de comportement mécanique macroscopique identifié. Un modèle de zone cohésive a été développé pour la simulation de la propagation des fissures. / Widely used for aircraft or rocket engine manufacturing titanium and its alloys are prone to the room-temperature creep that leads to the phenomenon of sustained load subcritical crack growth. One of the major cause of such unusual viscoplastic behavior of titanium is the phenomena of static and dynamic strain aging which represents an interaction between dislocations and interstitial atoms of oxygen and hydrogen. The aim of the present experimental and numerical multiscale study is to investigate the influence of the interstitial hydrogen and oxygen on the viscoplastic behavior and the resistance to sustained load cracking in commercially pure titanium of phase alpha.In a first step, a scenario of static and dynamic strain aging was proposed. The presence of the stress peak was attributed to the segregation of interstitial atoms of oxygen on the edge <c+a> dislocations. In case of dynamic strain aging, the observed instabilities, typical for the Portevin-Le Chatelier effect, were associated with the non-planar core of screw <a>-type dislocations. The crystal plasticity was introduced into the phenomenological model in order to capture the strain aging phenomena and the anisotropy of the mechanical properties. The modeling approach for strain aging suggested by Kubin-Estrin-McCormick is based on the internal variable called the aging time which corresponds to the waiting time of a dislocation in a pinned state. Finite element simulations were then performed on the polycrystalline aggregates for different number of grains. At the next step, fracture toughness and sustained load cracking tests were performed on the material with different levels of hydrogen. Finally, numerical simulations of toughness and sustained load cracking tests using the identified viscoplastic model were carried out for all experimental conditions. A cohesive zone model was then introduced ahead of the crack tip to simulate crack propagation.
|
6 |
Comportement mécanique et couplage mécanique-oxydation dans l'alliage 718 : effet des éléments en solution solide / Mechanical behavior and coupling between mechanical and oxidation in alloy 718 : effect of solide solution elementsMax, Bertrand 26 June 2014 (has links)
L'alliage 718 est le superalliage le plus utilisé industriellement du fait de ses excellentes propriétés mécaniques, ainsi que de sa tenue à l'oxydation et à la corrosion dans une large gamme de températures et de modes de sollicitation. Néanmoins, cet alliage présente une sensibilité vis-àvis des phénomènes de corrosion sous contrainte et fissuration assistée par l'oxydation sous contrainte dans les gammes de température de service. Les mécanismes à l'origine de ce phénomène restent encore mal compris, cependant un lien entre le changement de mode de rupture et les domaines d'apparition d'instabilités de l'écoulement plastique est clairement établi. Au cours de cette étude nous avons étudié ce phénomène d'instabilités, effet Portevin Le Chatelier, de l'alliage 718 au cours d'essais de traction menés dans une large gamme de températures et de vitesses de déformation. Différents domaines d'instabilités ont pu être mis en évidence, dont les caractéristiques suggèrent l'interaction des dislocations avec des solutés de différentes natures : interstitiels aux plus basses températures, et substitutionnels pour les températures les plus élevées. Des essais de spectroscopie mécanique sur l'alliage 718 et des alliages de compositions voisines montrent un effet de la mobilité des atomes de molybdène au sein du matériau dans cette gamme de températures. Des essais dédiés à l'étude des phénomènes d'interaction entre plasticité et oxydation ont aussi été réalisés. Les résultats mettent en évidence un fort effet de vitesse sur les propriétés mécaniques de l'alliage 718 en atmosphère inerte et sur les caractéristiques de l'endommagement intergranulaire assisté par l'oxydation lors d'essais sous air laboratoire. La discussion engendrée par l'ensemble des résultats présentés permet d'émettre certaines hypothèses sur les couplages entre mécanismes de déformation et endommagement par l'oxydation à l'origine des phénomènes de fissuration observés. / Alloy 718 is the superalloy the most widely used in industry due to its excellent mechanical properties, as well as oxidation and corrosion resistance in wide range of temperatures and solicitation modes. Nevertheless, it is a well-known fact that this alloy is sensitive to stress corrosion cracking and oxidation assisted cracking under loading in the range of temperatures met in service. Mechanisms explaining this phenomenon are not well understood: nevertheless, it is well established that a relation exists between a change in fracture mode and the apparition of plastic instabilities phenomenon. During this study, the instability phenomenon, Portevin-Le Chatelier effect, in alloy 718 was studied by tensile tests in wide ranges of temperatures and strain rates. Different domains of plastic instabilities have been evidenced. Their characteristics suggest the existence of interactions between dislocations and different types of solute elements: interstitials for lower temperatures and substitutionals for higher testing temperatures. Mechanical spectroscopy tests have been performed on alloy 718 and various alloys which composition is comparable to that of alloy 718. These tests prove the mobility of molybdenum atoms in the alloy in the studied temperature range. Specific tests have been performed to study interaction phenomenon between plasticity and oxidation. These results highlight the strong effect of plastic strain rate on both mechanical behavior and intergranular cracking in alloy 718. The subsequent discussion leads to propose hypothesis on coupling effects between deformation mechanisms and oxidation assisted embrittlement in the observed cracking processes.
|
7 |
Atomic-scale modeling of twinning in titanium and other HCP alloysHooshmand, Mohammad Shahriar January 2019 (has links)
No description available.
|
8 |
Internal State Variable Modeling and Experiments of Structure-Property Relationships of Iron Based AlloysBrauer, Shane A 06 May 2017 (has links)
An investigation of the microstructure-mechanical property relationships for gray cast iron and a vintage ASTM A7 steel are presented herein. Gray cast iron was shown to have a moderate sensitivity to strain rate and a large disparity in behavior between compression, tension, and torsion. ASTM A7 steel was shown to behave in a more complex manor with the strain rate sensitivity having a negative relationship in tension and positive relationship in compression and torsion, the tensile stress-state producing the highest stress response, and the material producing a higher stress response when exposed to elevated temperatures. The counterintuitive behavior observed in A7 steel was attributed to dynamic strain aging. The Mississippi State University Internal State Variable Plasticity-Damage model was updated to accurately capture negative strain rate sensitivity and DSA embrittlement by developing kinematic, thermodynamic, and kinetic constitutive relationships for dynamic strain aging. A parametric study was performed to elucidate the behavior of the new internal state variable for dynamic strain aging. Gray cast iron was successfully calibrated to a pre-DSA version of the plasticity-damage model and A7 steel was successfully calibrated to the updated plasticity-damage model.
|
9 |
Structure-Property Relationships of an A36 Steel Alloy under Dynamic Loading ConditionsMayatt, Adam J 15 December 2012 (has links)
Structure-property quantification of an A36 steel alloy was the focus of this study in order to calibrate and validate a plasticity-damage model. The microstructural parameters included grain size, particle size, particle number density, particle nearest neighbor distances, and percent of ferrite and pearlite. The mechanical property data focused on stress-strain behavior under different applied strain rates (0.001/s, 0.1/s, and 1000/s), different temperatures (293 K and 573 K), and different stress states (compression, tension, and torsion). Notch tension tests were also conducted to validate the plasticity-damage model. Also, failure of an A36 I-beam was examined in cyclic loads, and the crack growth rates were quantified in terms of fatigue striation data. Dynamic strain aging was observed in the stress-strain behavior giving rise to an important point that there exists a critical temperature for such behavior.
|
Page generated in 0.0887 seconds