• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Stability of Effervescent Products by Co-Crystal Formation: A Novel Application of Crystal Engineered Citric Acid

Pagire, Sudhir K., Seaton, Colin C., Paradkar, Anant R 01 July 2020 (has links)
Yes / The major concern of the physical and chemical instability of effervescent products during manufacturing and storage is addressed through a co-crystallization strategy. Citric acid (CA) and sodium bicarbonate (SBC) are the essential components of effervescent products. CA is hygroscopic and led to an uncontrollable autocatalytic chain reaction with SBC in the presence of a small amount of moisture, causing product instability. The acid···amide dimer bond and layered structure of the citric acid-nicotinamide co-crystal restricts interaction of moisture with CA, making it nonhygroscopic, and improves the stability of effervescent products. The comparative study of effervescent products containing CA in its free form and as a co-crystal suggests a significant advantage of the use of co-crystal in effervescent products. This finding is supported by the mechanistic understanding developed through GAB and Y&N models obtained from moisture sorption data along with the computational investigations into moisture interactions with different crystal surfaces.
2

Characterisation of amorphous pharmaceutical materials

Grazier, Jeffery N. January 2013 (has links)
Small quantities of amorphous content can have a profound influence on the properties of a material, however their instability means that quantifying amorphous content over time is important for proving the stability of a drug. Quantifying amorphous content in α-lactose monohydrate by solid state 13C CP MAS NMR, has been carried out by use of proton saturation recovery relaxation and differentiating between spectra by partial least squares (PLS), however these techniques have not proved sensitive on their own, this work investigates their sensitivity in combination. Crystalline α-lactose monohydrate and a rapidly quenched melt were combined to create a set of calibration mixes, whose spectra were recorded using proton saturation recovery relaxations ranging from 2 to 60 seconds. This technique showed a limit of detection of 0.17% (LOD = intercept + 3xSy/x), with a relaxation delay of 15 s and was able to recognise amorphous materials generated by spray and freeze drying. The atmospheric effects on the proton saturation recovery relaxation times of different amorphous lactose preparations were investigated. This found that an oxygen atmosphere reduced the relaxation times, of amorphous lactose that was prepared from a rapidly quenched melt. The loss of moisture from spray dried and freeze dried samples to less than 1% removed the significance of this effect. Lactose is an important excipient in pharmaceuticals and a key ingredient of confectionary, very little research has been carried out in to the quantification of the isomers of different preparations of amorphous lactose. This work quantifies the isomer content by Gas Chromatography with Flame Ionisation Detection (GC-FID) using a DB-17 15m 0.53mm 1.00 μm column and derivatisation with N- (trimethylsilyl)imidazole.
3

Surface characterisation of thermally modified spruce wood and influence of water vapour sorption

Källbom, Susanna January 2015 (has links)
Today there is growing interest within the construction sector to increase the proportion of biobased building materials made from renewable resources. By-products or residuals from wood processing could in this case be valuable resources for manufacturing new types of biocomposites. An important research question related to wood-based biocomposites is how to characterise molecular interactions between the different components in the composite. The hygroscopic character of wood and its water sorption properties are also crucial. Thermal modification (or heat treatment) of wood results in a number of enhanced properties such as reduced hygroscopicity and improved dimensional stability as well as increased resistance to microbiological decay. In this thesis, surface characteristics of thermally modified wood components (often called wood fibres or particles) and influencing effects from moisture sorption have been analysed using a number of material characterisation techniques. The aim is to increase the understanding in how to design efficient material combinations for the use of such wood components in biocomposites. The specific objective was to study surface energy characteristics of thermally modified spruce (Picea abies Karst.) under influences of water vapour sorption. An effort was also made to establish a link between surface energy and surface chemical composition. The surface energy of both thermally modified and unmodified wood components were studied at different surface coverages using inverse gas chromatography (IGC), providing information about the heterogeneity of the surface energy. The water vapour sorption behaviour of the wood components was studied using the dynamic vapour sorption (DVS) method, and their surface chemical composition was studied by means of X-ray photoelectron spectroscopy (XPS). Additionally, the morphology of the wood components was studied with scanning electron microscopy (SEM). The IGC analysis indicated a more heterogeneous surface energy character of the thermally modified wood compared with the unmodified wood. An increase of the dispersive surface energy due to exposure to an increased relative humidity (RH) from 0% to 75% RH at 30 ˚C was also indicated for the modified samples. The DVS analysis indicated an increase in equilibrium moisture content (EMC) in adsorption due to the exposure to 75% RH. Furthermore, the XPS results indicated a decrease of extractable and a relative increase of non-extractable compounds due to the exposure, valid for both the modified and the unmodified wood. The property changes due to the increased RH condition and also due to the thermal modification are suggested to be related to alterations in the amount of accessible hydroxyl groups in the wood surface. Recommendations for future work and implications of the results could be related to knowledge-based tailoring of new compatible and durable material combinations, for example when using thermally modified wood components in new types of biocomposites for outdoor applications. / <p>Forskningsfinansiärer och strategiska forskningsprojekt:</p><p>Nils och Dorthi Troëdssons forskningsfond (Projektnr 793/12 Hydro-termo-mekanisk modifiering av trä).</p><p> KTH Royal Institute of Technology.</p><p> COST Action FP0904.</p><p> KK-Stiftelsen.</p><p>Stiftelsen för strategiskt forskning (SSF). QC 20150908</p>

Page generated in 0.0612 seconds