Spelling suggestions: "subject:"dynamical systems theory"" "subject:"indynamical systems theory""
21 |
Low-Energy Lunar Transfers in the Bicircular Restricted Four-body ProblemStephen Scheuerle Jr. (10676634) 26 April 2024 (has links)
<p dir="ltr"> With NASA's Artemis program and international collaborations focused on building a sustainable infrastructure for human exploration of the Moon, there is a growing demand for lunar exploration and complex spaceflight operations in cislunar space. However, designing efficient transfer trajectories between the Earth and the Moon remains complex and challenging. This investigation focuses on developing a dynamically informed framework for constructing low-energy transfers in the Earth-Moon-Sun Bicircular Restricted Four-body Problem (BCR4BP). Techniques within dynamical systems theory and numerical methods are exploited to construct transfers to various cislunar orbits. The analysis aims to contribute to a deeper understanding of the dynamical structures governing spacecraft motion. It addresses the characteristics of dynamical structures that facilitate the construction of propellant-efficient pathways between the Earth and the Moon, exploring periodic structures and energy properties from the Circular Restricted Three-body Problem (CR3BP) and BCR4BP. The investigation also focuses on constructing families of low-energy transfers by incorporating electric propulsion, i.e., low thrust, in an effort to reduce the time of flight and offer alternative transfer geometries. Additionally, the investigation introduces a process to transition solutions to the higher fidelity ephemeris force model to accurately model spacecraft motion through the Earth-Moon-Sun system. This research provides insights into constructing families of ballistic lunar transfers (BLTs) and cislunar low-energy flight paths (CLEFs), offering a foundation for future mission design and exploration of the Earth-Moon system.</p>
|
22 |
Characterization of Quasi-Periodic Orbits for Applications in the Sun-Earth and Earth-Moon SystemsBrian P. McCarthy (5930747) 17 January 2019 (has links)
<div>As destinations of missions in both human and robotic spaceflight become more exotic, a foundational understanding the dynamical structures in the gravitational environments enable more informed mission trajectory designs. One particular type of structure, quasi-periodic orbits, are examined in this investigation. Specifically, efficient computation of quasi-periodic orbits and leveraging quasi-periodic orbits as trajectory design alternatives in the Earth-Moon and Sun-Earth systems. First, periodic orbits and their associated center manifold are discussed to provide the background for the existence of quasi-periodic motion on n-dimensional invariant tori, where n corresponds to the number of fundamental frequencies that define the motion. Single and multiple shooting differential corrections strategies are summarized to compute families 2-dimensional tori in the Circular Restricted Three-Body Problem (CR3BP) using a stroboscopic mapping technique, originally developed by Howell and Olikara. Three types of quasi-periodic orbit families are presented: constant energy, constant frequency ratio, and constant mapping time families. Stability of quasi-periodic orbits is summarized and characterized with a single stability index quantity. For unstable quasi-periodic orbits, hyperbolic manifolds are computed from the differential of a discretized invariant curve. The use of quasi-periodic orbits is also demonstrated for destination orbits and transfer trajectories. Quasi-DROs are examined in the CR3BP and the Sun-Earth-Moon ephemeris model to achieve constant line of sight with Earth and avoid lunar eclipsing by exploiting orbital resonance. Arcs from quasi-periodic orbits are leveraged to provide an initial guess for transfer trajectory design between a planar Lyapunov orbit and an unstable halo orbit in the Earth-Moon system. Additionally, quasi-periodic trajectory arcs are exploited for transfer trajectory initial guesses between nearly stable periodic orbits in the Earth-Moon system. Lastly, stable hyperbolic manifolds from a Sun-Earth L<sub>1</sub> quasi-vertical orbit are employed to design maneuver-free transfer from the LEO vicinity to a quasi-vertical orbit.</div>
|
Page generated in 0.0634 seconds