Spelling suggestions: "subject:"dedynamique dde contact"" "subject:"dedynamique dee contact""
1 |
Ondes dans les milieux granulaires : de l’échelle microscopique à l’échelle macroscopique. / Waves in granular media : from microscopic scale to macroscopic scale.Chrząszcz, Kamil 15 September 2016 (has links)
Cette thèse porte sur l’étude de la propagation d’ondes mécaniques dans des milieux granulaires secs ou mouillés, avec pour objectif de relier les phénomènes de l’échelle microscopique (dynamique des grains, potentiels d’interactions entre particules, rhéologie du fluide interstitiel) aux propriétés de l’échelle macroscopique (relation de dispersion, vitesse et atténuation des ondes dans l’approximation des grandes longueurs d’ondes). Les systèmes étudiés sont soit des milieux granulaires unidimensionnels de grande taille, analogues des chemins de plus forts contacts entre particules (les chaînes de force) dans les empilements de grains réels, soit les milieux granulaires réels eux-mêmes. Dans un premier temps, nous étudions expérimentalement la transmission d’ondes au travers d’un alignement de sphères centimétriques sèches, que nous modélisons via le potentiel de Hertz. Nous montrons que le couplage élastofrictionnel entre les grains et un substrat (le support des sphères) engendre un potentiel élastique local, qui induit à son tour une bande interdite a fréquence nulle dans la fonction de transfert. Dans un deuxième temps, nous montrons que la présence d'une quantité infime de fluide visqueux au contact entre chaque particule induit une interaction élasto-hydrodynamique (EHD). Ce dernier induit une modification de l’atténuation des ondes et une augmentation très significative de la vitesse de propagation, qui dans ce cas dépendent de manière non-triviale de l’élasticité des particules, de la viscosité du fluide et de la fréquence. Dans un troisième temps, nous vérifions la fiabilité de notre analyse pour décrire la propagation d'ondes ultrasonores dans des milieux granulaires réels, tel que le sable mouillé ou non ; les particules sont ici des sphères millimétriques. Dans le cas sec, nos résultats sont en accord avec un modèle connu de milieux effectifs (EMT) qui relève de l’interaction de Hertz-Mindlin dans l'approximation des grandes longueurs d'ondes. Dans le cas mouille, le modèle EMT combiné à un mécanisme EHD reproduit de manière acceptable nos observations préliminaires. / This thesis deals with the study of mechanical wave propagation in dry or wet granular media, with the aim of relating the phenomena at the microscopic scale (particles dynamics, interaction potentials between grains, rheology of the interstitial fluid) to the features at the macroscopic scale (dispersion relation, wave speed and attenuation in the long wavelength approximation). The systems under study are either large one-dimensional granular media, as the analogs of the paths of the most compressed grains (the force chains) in real granular packings, or the real granular media themselves. In a first place, we study experimentally the wave transmission through alignments of dry centimetric spheres, which we model via the Hertz potential. We show that the elasto-frictional coupling between the grains and a substrate (the spheres’ support) induces an on-site elastic potential, which in turn induces a band gap at zero frequency in the transfer function. In a second place, we show that the presence of an infinitesimal amount of viscous fluid at the contact between every particle induces an elasto-hydrodynamic (EHD) interaction. The later affects the attenuation of waves in addition to a significant increase of the wave speed, which in this case both non-trivially depend on the elasticity of the particles, on the viscosity of the fluid and on the frequency. In a third place, we check the reliability of our analysis to describe ultrasonic wave propagation in real granular materials such as dry or wet sand; our particles are here millimetric spheres. In the dry configuration, our results are consistent with an effective medium theory (EMT) which relies on the Hertz-Mindlin interaction in the long wavelength approximation. In the wet configuration, the EMT model combined with an EHD mechanism fairly reproduces our preliminary observations.
|
2 |
Mechanical energy balance of frictional contacts : From surface to solid energy dissipation in contact dynamic instabilities / Bilan énergétique mécanique de contacts frottants en présence d'instabilités dynamiques de contact; de la dissipation surfacique à la dissipation volumiqueBrunetti, Jacopo 04 December 2015 (has links)
Chaque fois que se produit un mouvement relatif entre deux systèmes, avec une interface à contact sec, le contact frottant induit des vibrations. La dynamique locale au contact (ruptures et la génération d'ondes) se couple avec la dynamique du système, donnant origine à des vibrations et affectant le comportement frictionnel macroscopique du système. Dans cette thèse, afin de développer une approche globale pour l'investigation des phénomènes multi-physiques, l'énergie a été utilisée comme une caractéristique physique universelle du couplage. La formulation de un bilan énergétique mécanique est utilisé pour identifier deux termes dissipatifs différents, i.e. la dissipation par amortissement matériel/système et la dissipation au contact. Les flux d'énergie, provenant des surfaces en contact et dus aux vibrations induites par frottement, excitent la réponse dynamique du système et, vice versa, l'influence de la réponse dynamique du système sur la dissipation d'énergie locale à l'interface de contact affecte les phénomènes tribologiques connexes. Dans cette thèse, les vibrations induites par le frottement ont été analysées en utilisant: l'approche par éléments finis pour étudier, par l'analyse des flux d'énergie, le couplage entre le contact et la dynamique du système; l'approche expérimentale pour valider les résultats numériques et observer l'influence des phénomènes pas encore inclus dans les modèles numériques; une approche avec une modèle à paramètres concentrés pour évaluer rapidement les effets des paramètres du système. L'analyse numérique par le modèle éléments finis 2D permet une répartition de l’énergie introduite dans le système mécanique entre les deux termes dissipatifs (amortissement matériau et contact), au cours de la réponse transitoire aussi bien en conditions stables qu’instables. En particulier, les vibrations induites par frottement modifient la capacité globale du système à absorber et dissiper l’énergie; une estimation de la puissance dissipée au contact, sans prendre en compte le comportement dynamique du système (flux d’énergie par les vibrations induites par frottement) peut conduire à des erreurs significatives dans la quantification de l’énergie dissipée au contact, ce qui affecte directement plusieurs phénomènes tribologiques. Les mesures expérimentales de crissement montrent comment les mêmes modes instables sont reproduits soit expérimentalement soit numériquement, validant l’utilisation de la simulation 2D transitoires pour l’analyse des vibrations instables induites par le frottement. L’équilibre énergétique a été utilisé sur le modèle à paramétrés concentrés, pour approcher le problème de la surestimation d’instabilité, qui est caractéristique d’une analyse des valeurs propres complexes. Un nouvel indice d’instabilité (MAI) a été défini, par des considérations énergétiques, pour comparer les différents modes instables et pour sélectionner le mode qui devient effectivement instable pendant le crissement. / Whenever relative motion between two system components occurs, through a dry contact interface, vibrations are induced by the frictional contact. The local dynamics at the contact (ruptures and wave generation) couples with the system dynamics, giving origin to vibrations and affecting the macroscopic frictional behavior of the system. In this thesis, in order to develop an overall approach to the investigation of the multi-physic phenomenon, the energy has been pointed out as a coupling physical characteristic among the several phenomena at the different scales. The formulation of a mechanical energy balance is used for distinguishing between two different dissipative terms, i.e. the dissipation by material/system damping and the dissipation at the contact. The energy flows coming from the frictional surfaces, by friction induced vibrations, excites the dynamic response of the system, and vice versa the influence of the system dynamic response on the local energy dissipation at the contact interface affects the related tribological phenomena. The friction-induced vibrations have been analyzed using three different approaches: the finite element approach, to investigate the coupling between the contact and system dynamics by the analysis of the energy flows; the experimental approach to validate the numerical results and observe the influence of phenomena not still included into the numerical model; a lumped parameter model approach to quickly investigate the effects of the system parameters. The numerical analysis by the 2D finite element model allowed investigating the repartition of the energy introduced into the mechanical system between the two dissipative terms (material damping and contact) during both stable and unstable friction-induced vibrations. In particular, it has been shown how the friction-induced vibrations modify the overall capacity of the system to absorb and dissipate energy; an estimation of the power dissipated at the contact, without considering the dynamic behavior of the system (energy flows by friction induced vibrations) can lead to significant error in the quantification of the dissipated energy at the contact, which affects directly several tribological phenomena. The experimental squeal measurements show how the same unstable modes are recovered both experimentally and numerically, validating the use of the 2D transient simulations for the reproduction of the unstable friction-induced vibrations. Once the energy balance formulated, it has been used on the lumped model to approach the instability over-prediction issue characteristic of the complex eigenvalue analysis. By energy considerations, a newer instability index (MAI) has been defined to compare the different unstable modes and to select the mode that becomes effectively unstable during the transient response. The Modal Absorption Index allows quantifying the capability of each mode to exchange energy with the external environment.
|
3 |
Numerical tribology of the wheel-rail contact : Application to corrugation defect / Tribologie numérique du contact roue-rail : Application à défaut d'ondulationDuan, FangFang 09 March 2015 (has links)
Depuis plus d'un siècle, l’usure ondulatoire représente un des problèmes de maintenance les plus important pour les réseaux ferroviaires. Celle-ci est à l’origine d’émissions sonores incommodantes pour le voisinage et de vibrations structurelles pouvant réduire la durée de vie des infrastructures et matériels ferroviaires. Ce phénomène périodique présent à la surface des rails est intimement lié à la dynamique du contact roue-rail qui résulte des paramètres régissant le frottement, la dynamique du train et de la voie… Afin de mieux appréhender les conditions menant à l’apparition de l’usure ondulation, un modèle numérique a été proposé pour compenser l’impossibilité d’instrumenter localement et de façon fiable un contact roue-rail dynamiquement. Tout d'abord, un outil approprié a été choisi pour modéliser la dynamique du contact roue-rail afin de reproduire numérique de l’usure ondulatoire des voies rectilignes. Le code d'éléments finis dynamique implicite Abaqus a été choisi pour instrumenter numériquement localement le contact roue-rail. Ainsi, tant l'origine que l'évolution de l’usure ondulatoire dans des phases transitoires (accélération / décélération) sont étudiées. Une étude de sensibilité a été menée pour mettre en évidence la sensibilité de l’usure ondulatoire apparaissant dans des conditions transitoires au passage d’une ou plusieurs roues ainsi que d’un défaut géométrique présent à la surface du rail. Des conditions dynamiques locales d’adhérence-glissement (stick-slip), liées à la dynamique de la roue et du rail couplés par le contact, est identifié comme origine de l’usure ondulatoire des voies rectilignes dans des conditions transitoires. Deuxièmement, les résultats obtenues avec le modèles précédent ont mis en évidence une décroissance de l’amplitude de l’usure ondulatoire reproduire numérique en fonction du nombre de roue passant sur le rail. Ce résultat semble être en contradiction avec les observations de rails réels. Ce problème est lié à la difficulté de gérer la dynamique de contact, et tout particulièrement dans le cas où il y a des impacts locaux, dans les modèles éléments finis classiques tels que ceux implémentés dans Abaqus. Pour palier ce problème, une méthode de masser redistribuée a été implémentée dans Abaqus et utilisée sur le cas précédent. Les résultats montrent un accroissement plus réaliste de l’usure ondulatoire en fonction du nombre de roues. / For more than a century, rail corrugation has been exposed as one of the most serious problems experienced in railway networks. It also comes with a series of problems for maintenance, such as rolling noises and structural vibrations that can reduce lifetime of both train and track. This periodical phenomenon on rail surface is closely linked to wheel-rail contact dynamic, which depends on friction, train dynamics… To better understand corrugation birth conditions, a numerical model is suggested to complement the experimental limitations and to instrument a wheel-rail contact both locally and dynamically. At first, an appropriate tool was chosen to create the dynamic wheel-rail contact model to reproduce straight-track corrugation, also called “short-pitch” corrugation. The implicit dynamic finite element code Abaqus was chosen to investigate the dynamic local contact conditions. Both the origin and the evolution of straight-track corrugation under transient conditions (acceleration / deceleration) are studied. The parametrical sensibility of corrugation is thus investigated both with single/multiple wheel passing(s) and with geometric defect. A stick-slip phenomenon, linked to both wheel and rail dynamics coupled through the contact, is identified as the root of straight-track corrugation under transient conditions. Secondly, results obtained with the previous model have highlighted a quick decrease of corrugation amplitude with the increase of wheel passings over the rail. This last result seems to be in contradiction with reality. This problem comes from the difficulty to reliably manage contact dynamics, and particularly with local impacts, with the use of classical finite element models such as the one implemented in Abaqus. To compensate for this lack, a mass redistribution method is implemented in Abaqus and used with the previous case. The results show a more realistic corrugation growth according to the number of wheel passings.
|
Page generated in 0.0982 seconds