• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical modelling of nonlinear interactions of waves with submerged structures : applied to the simulation of wave energy converters / Modélisation numérique des interactions non-linéaires entre vagues et structures immergées : appliquée à la simulation de systèmes houlomoteurs

Guerber, Etienne 19 December 2011 (has links)
Cette thèse présente le développement d'un modèle numérique avancé, capable de simuler les interactions entre des vagues de surface de cambrure quelconque et des corps rigides immergés ayant des mouvements de grande amplitude. Fondé sur la théorie potentielle, il propose une résolution couplée de la dynamique vagues/structure par la méthode implicite de Van Daalen (1993), encore appelée méthode du potentiel d'accélération par Tanizawa (1995). La précision du modèle à deux dimensions est testée sur un ensemble d'applications impliquant le mouvement forcé ou libre d'un cylindre horizontal immergé, de section circulaire : diffraction par un cylindre fixe, radiation par un cylindre en mouvement forcé de grande amplitude, absorption des vagues par le cylindre de Bristol. Pour chaque application, les résultats numériques sont comparés à des résultats expérimentaux ou analytiques issus de la théorie linéaire, avec un bon accord en particulier pour les petites amplitudes de mouvement du cylindre et pour les vagues de faibles cambrures. La génération de vagues irrégulières et la prise en compte d'un second corps cylindrique immergé sont ensuite intégrées au modèle, et illustrées sur des applications pratiques avec des systèmes récupérateurs d'énergie des vagues simples. Enfin, le modèle est étendu en trois dimensions avec des premières applications au cas d'une sphère décrivant des mouvements de grande amplitude / This PhD is dedicated to the development of an advanced numerical model for simulating interactions between free surface waves of arbitrary steepness and rigid bodies in high amplitude motions. Based on potential theory, it solves the coupled dynamics of waves and structure with the implicit method by Van Daalen (1993), also named the acceleration potential method by Tanizawa (1995). The precision of this two-dimensional model is tested on a wide range of applications involving the forced motion or free motion of a submerged horizontal cylinder of circular cross-section : diffraction by a fixed cylinder, radiation by a cylinder in specified high amplitude motions, wave absorption by the Bristol cylinder. In each of these applications, numerical results are compared to experimental data or analytical solutions based on the linear wave theory, with a good agreement especially for small amplitude motions of the cylinder and small wave steepnesses. The irregular wave generation by a paddle and the possibility to add an extra circular cylinder are integrated in the model and illustrated on practical applications with simple wave energy converters. The model is finally extended to three dimensions, with preliminary results for a sphere in large amplitude heaving oscillations
2

Étude d'intégrateurs géométriques pour des équations différentielles

Vilmart, Gilles 01 December 2008 (has links) (PDF)
Le sujet de la thèse est l'étude et la construction de méthodes numériques géométriques pour les équations différentielles, qui préservent des propriétés géométriques du flot exact, notamment la symétrie, la symplecticité des systèmes hamiltoniens, la conservation d'intégrales premières, la structure de Poisson, etc.<br />Dans la première partie, on introduit une nouvelle approche de construction d'intégrateurs numériques géométriques d'ordre élevé en s'inspirant de la théorie des équations différentielles modifiées. Le cas des méthodes développables en B-séries est spécifiquement analysé et on introduit une nouvelle loi de composition sur les B-séries. L'efficacité de cette approche est illustrée par la construction d'un nouvel intégrateur géométrique d'ordre élevé pour les équations du mouvement d'un corps rigide. On obtient également une méthode numérique précise pour le calcul de points conjugués pour les géodésiques du corps rigide.<br />Dans la seconde partie, on étudie dans quelle mesure les excellentes performances des méthodes symplectiques, pour l'intégration à long terme en astronomie et en dynamique moléculaire, persistent pour les problèmes de contrôle optimal. On discute également l'extension de la théorie des équations modifiées aux problèmes de contrôle optimal.<br />Dans le même esprit que les équations modifiées, on considère dans la dernière partie des méthodes de pas fractionnaire (splitting) pour les systèmes hamiltoniens perturbés, utilisant des potentiels modifiés. On termine par la construction de méthodes de splitting d'ordre élevé avec temps complexes pour les équations aux dérivées partielles paraboliques, notamment les problèmes de réaction-diffusion en chimie.

Page generated in 0.0675 seconds