• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 672
  • 518
  • 63
  • 56
  • 50
  • 32
  • 23
  • 19
  • 19
  • 15
  • 13
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1734
  • 255
  • 253
  • 214
  • 195
  • 169
  • 159
  • 158
  • 137
  • 130
  • 118
  • 106
  • 106
  • 100
  • 100
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Deformable models for segmentation of medical ultrasound images /

Chalana, Vikram, January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references (leaves [91]-100).
252

The relationship of caudate volume, attention, executive functioning and psychosocial functioning in children with fetal alcohol syndrome : an MRI investigation /

Ruttle, Erin Mary. January 2007 (has links)
Thesis (M.A.)--York University, 2007. Graduate Programme in Psychology. / Typescript. Includes bibliographical references (leaves 60-70). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR32020
253

Fetal cardiac function predicting fetal compromise a prospective study /

Sin, Sai-yuen. January 1999 (has links)
Thesis (M.Med.Sc.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves 53-61). Also available in print.
254

Fetal membranes of the Canadian porcupine, Erethizon dorsatum, Linnaeus

Perrotta, Carmie Ann. January 1956 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1956. / Typescript. Abstracted in Dissertation abstracts, v. 16 (1956) no. 11, p. 1994-1995. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 155-157).
255

Stress is it a risk factor for small-for-gestational age births? : A secondary data analysis of the NICHD study for successive small-for-gestational age births (the Scandinavian SGA study) /

Gurumurthy, Prasanna. January 2006 (has links)
Thesis (M.S.)--University of Delaware, 2006. / Principal faculty advisor: Leta P. Aljadir, Dept. of Health, Nutrition and Exercise. Includes bibliographical references.
256

Early motor development of term breech- and cephalic-presenting infants /

Bartlett, Doreen Joan. January 1997 (has links) (PDF)
Thesis (Ph.d.)--University of Alberta, 1997. / Submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Doctor of Philosophy, Faculty of Rehabilitation Medicine. Also available online.
257

Uteroferrin a mechanism of maternal to fetal iron transport in swine /

Ducsay, Charles Andrew, January 1980 (has links)
Thesis (Ph. D.)--University of florida, 1980. / Description based on print version record. Typescript. Vita. Includes bibliographical references (leaves 161-179).
258

Morphological properties of articular chondrocytes in various experimental and clinical conditions

Karim, Asima January 2015 (has links)
Previous work has suggested that there exists a relationship between chondrocyte morphology and matrix metabolism. Changes to chondrocyte morphology have been reported in human cartilage however it is unclear if these are involved in the degenerative process associated with osteoarthritis (OA). In this work, the morphology of human and bovine chondrocytes has been characterised under a range of conditions. Bovine chondrocytes have been utilised in these experiments as bovine cartilage is non-degenerate and the chondrocytes have ‘normal’ morphology. However, if human cartilage have been used instead then there is possibility of having chondrocytes of mixed shapes i.e. both ‘normal’ and ‘abnormal’ cells. The thesis aimed at experimentally inducing morphological changes to chondrocytes to determine whether these changes resemble those observed in human cartilage. The ultimate aim is to model these changes to clarify the link between morphology and matrix metabolism by determining how morphological changes influence matrix metabolism. A classification system was developed for chondrocyte morphology allowing the quantification of chondrocyte shapes under different conditions permitting statistical comparisons. The different conditions utilised were (1) non-degenerate and mildly-degenerate human articular cartilage and (2) two in vitro models (a) weak 3D agarose gels to study the effect of gel strength and increasing concentrations of foetal calf serum (FCS) on morphology of bovine chondrocytes and (b) scalpel induced mechanically-injured bovine cartilage model to study in situ chondrocyte viability and morphology at the injured site in various culture conditions. Additionally, the effect of raised medium osmolarity on the response of chondrocytes to injury was studied to determine if the abnormal morphology could be reversed. Using fluorescence-mode confocal laser scanning microscopy (CLSM), chondrocyte viability, volume and morphology were determined and quantified by using VolocityTM 3D image analysis software. Histological evaluation of matrix by using Haematoxylin and eosin, Alcian blue and Masson’s trichrome staining of matrix produced by chondrocytes cultured in strong or weak agarose gels and in injured cartilage was determined. Additionally, immunohistochemical evaluation of matrix (collagen Types I & II) produced by chondrocytes was also performed. Results demonstrated that in non-degenerate human femoral head cartilage, ~83% chondrocytes were normal in morphology and 17±2% chondrocytes had cytoplasmic processes as compared to mildly-degenerate cartilage where 35±5% abnormal chondrocytes with cytoplasmic processes were present. In non-degenerate cartilage, 11±3% chondrocytes formed small sized clusters however clustering was quite evident in the superficial zone of mildly-degenerate human femoral head cartilage where 43±16% chondrocytes had formed large clusters. In mildly-degenerate cartilage the number of abnormal chondrocytes with processes, length of processes and number of processes per cell were greater in the superficial as compared to mid and deep zones. A model was developed to study the effect of external supporting agarose gel on chondrocyte morphology and also to determine the influence of FCS. Bovine chondrocytes cultured in weak gels after 7 days developed similar morphological changes as those observed in degenerate human cartilage. However, in the strong gels only few chondrocytes with morphological changes were present i.e. similar to non-degenerate cartilage. These morphological changes (development of clusters and processes) occurred more rapidly with increasing concentrations of FCS. Histology revealed less Alcian blue staining intensity around chondrocytes cultured in weak gels as compared to strong gels suggesting altered matrix produced by abnormal chondrocytes. FCS and gel strength were therefore proposed as related factors in regulating chondrocyte morphology. In the bovine injured cartilage explant model, after 14 days chondrocytes at the injury in the presence of FCS or synovial fluid (SF) produced morphological changes. These changes comprised cell enlargement, flattening, elongation and production of cytoplasmic processes. In the absence of FCS or SF, chondrocytes at the injury remained unaffected and were morphologically ‘normal’. Throughout the cartilage and even in the absence of subchondral bone, chondrocytes displayed morphological abnormalities in the presence of FCS or SF. These findings suggested that this is not the property of chondrocytes in the superficial layers alone rather it is due to the extent of penetration of the ‘factors’ into the matrix and there is no possibility of interference of injured site with osteocytes or bone factors. Histology revealed that these abnormal chondrocytes showed less staining with Alcian blue at the injury suggesting that these morphological changes might play a role in the changes to matrix metabolism. By raising the osmolarity of the culture medium these changes were inhibited and chondrocytes maintained their normal morphology. The results suggest that morphogenic/proliferative factors in FCS or SF and strength/damage to the matrix may be inter-related and act as potent controllers of chondrocyte morphology. Raised osmolarity was found to inhibit the morphological changes suggesting the possibly that hyperosmolarity can antagonise the effects of these factors. The key conclusions from the thesis were (a) in non-degenerate human femoral cartilage a large percentage of chondrocytes ~83% were normal in morphology and the rest were abnormal however in mildly-degenerate cartilage 35±5% abnormal chondrocytes with processes were present (b) the changes to chondrocyte morphology (development of clusters and processes) were exacerbated with cartilage degeneration (c) chondrocytes cultured in the weak gels produced morphological changes as compared to strong gels (d) chondrocytes at the injury displayed marked morphological changes in the presence of FCS or SF (e) by raising the medium osmolarity these morphological changes to chondrocytes at the injury were inhibited. These results show that chondrocyte morphology is complex and strongly dependent on the environmental settings. Experimental conditions were therefore identified which showed increased chondrocyte volume, abnormal morphology with cytoplasmic processes, enhanced proliferation/cluster formation and matrix changes. These changes to volume and morphology of chondrocytes in the models studied in this work had certain similarities to the changes observed in human cartilage suggesting that these shape changes may play a role in the changes to matrix metabolism occurring in OA. These findings may be of translational relevance in clinical and experimental research into cartilage injury and degeneration by providing new insights in understanding the role played by chondrocyte morphology in cartilage degeneration and injury.
259

Estudo da atuação de substâncias de abuso durante o desenvolvimento embrionário por meio da químio-biologia de sistemas

Feltes, Bruno César January 2013 (has links)
Muitos caminhos bioquímicos e interações moleculares ainda são pouco conhecidos para as ciências biomédicas, dentre elas a ação de pequenos compostos tóxicos no desenvolvimento embrionário de diferentes modelos biológicos. Neste sentido, dois cenários críticos, de amplo interesse clínico e de impacto social, se destacam: o abuso de tabaco e de bebidas alcoólicas. Sabe-se que os derivados químicos do tabaco e do etanol são capazes de alterar o funcionamento de diferentes vias bioquímicas, levando a modificações. Por exemplo, crianças nascidas de mulheres fumantes expostas ou usuárias de tabaco mostram inúmeras alterações morfológicas e funcionais em diferentes tecidos do seu organismo. Da mesma forma, o abuso de álcool durante a gravidez é responsável por danos ao tecido neural do feto que, ao nascer, apresenta problemas cognitivos, motores e de aprendizado que se agravam ao longo da vida. Esse quadro patológico é chamado de Síndrome Alcoólica Fetal (SAF). Infelizmente, devido à complexidade inerente dos sistemas bioquímicos, os mecanismos moleculares subjacentes a ambos cenários são escassos. Assim, essa dissertação de mestrado visa aplicar diversas ferramentas de químio-biologia de sistemas para elucidar os possíveis alvos e caminhos moleculares relacionados às anomalias geradas pelo abuso de tabaco e à SAF. Para tanto, análises topológicas globais e locais de redes de interação foram empregadas juntamente com informações transcritômicas para ambas as condições de uso de tabaco e de etanol em modelo humano e murino (Mus musculus). As análises dos efeitos do tabaco no desenvolvimento mostram que o abuso deste resulta na alteração na biossíntese de prostaglandinas e leucotrieno, assim como na regulação negativa de genes HOX e receptores de ácido retinóico. Da mesma forma, foi possível identificar diversas proteínas relacionados a diferenciação celular e formação do tecido ósseo. Por fim, as análises dos efeitos do etanol no neurodesenvolvimento indicam que o etanol afeta a diferenciação neural e importantes processos como a via de glutamato e o metabolismo de diferentes vitaminas. As análises indicam que o etanol pode causar graves quadros de neuroinflamação. Também se observou que diversas vitaminas têm a sua biossíntese e o seu metabolismo alterado pelo etanol, com importantes implicações no neurodesenvolvimento. / Many pathways and molecular interactions are still poorly described in biomedical sciences. Among these pathways, the knowledge related to the action of toxic compounds during embryonic development is largely unknown. In this sense, two scenarios, of broad clinical and social impact stand out: the abuse of tobacco and alcohol in the form of fermented or distillates. It is known that the chemical derivatives of tobacco and ethanol are capable of alter the functionality of different biochemical pathways. For example, children born from smoking abusing women or exposed to tobacco smoke show innumerous morphological alterations in different tissues. In addition, the abuse of alcohol during pregnancy is responsible for damages in the fetus neural tissue. Those fetuses, after birth and during growth, present cognitive, motors and learning problems that aggravate in the course of life. This pathology is called Fetal Alcohol Syndrome (FAS). Unfortunately, due to the inherent complexity of biochemical systems, the molecular mechanisms underlying both scenarios are scarce and poorly understood. Thus, this master’s degree dissertation aim to apply different chemo-systems biology tools to elucidate the possible molecular pathways and potential targets related to the tobacco and SAF-related anomalies. For such, local and global topological analyses from interaction networks were employed together with transcriptomic information to both conditions of tobacco and ethanol abuse in human and mice (Mus musculus). The analysis of the effect of tobacco during development shows that the abuse of this drug results in the alteration of prostaglandin and leukotriene biosynthesis, as well for a negative regulation of HOX gene receptors and retinoic acid. Moreover, it was possible to identify different proteins related to osteogenesis. Finally, the analysis of the effects of ethanol in neurodevelopment indicate that ethanol impair neural differentiation and essential process, such as glutamate pathway and the metabolism of different vitamins. The gathered data also propose a model where ethanol can promote severe neuroinflammation. In addition, was observed that multiple vitamins had their biosynthesis and metabolism impaired by ethanol, with crucial implications for neurodevelopment.
260

Delving deep into fetal neurosonography : an image analysis approach

Huang, Ruobing January 2017 (has links)
Ultrasound screening has been used for decades as the main modality to examine fetal brain development and to diagnose possible anomalies. However, basic clinical ultrasound examination of the fetal head is limited to axial planes of the brain and linear measurements which may have restrained its potential and efficacy. The recent introduction of three-dimensional (3D) ultrasound provides the opportunity to navigate to different anatomical planes and to evaluate structures in 3D within the developing brain. Regardless of acquisition methods, interpreting 2D/3D ultrasound fetal brain images require considerable skill and time. In this thesis, a series of automatic image analysis algorithms are proposed that exploit the rich sonographic patterns captured by the scans and help to simplify clinical examination. The original contributions include: 1. An original skull detection method for 3D ultrasound images, which achieves mean accuracy of 2.2 ± 1.6 mm compared to the ground truth (GT). In addition, the algorithm is utilised for accurate automated measurement of essential biometry in standard examinations: biparietal diameter (mean accuracy: 2.1 ± 1.4 mm) and head circumference (mean accuracy: 4.5 ± 3.7 mm). 2. A plane detection algorithm. It automatically extracts mid-sagittal plane that provides visualization of midline structures, which are crucial to assess central nervous system malformations. The automated planes are in accordance with manual ones (within 3.0 ± 3.5°). 3. A general segmentation framework for delineating fetal brain structures in 2D images. The automatically generated predictions are found to be agreed with the manual delineations (mean dice-similarity coefficient: 0.79 ± 0.07). As a by-product, the algorithm generated automated biometry. The results might be further utilized for morphological evaluation in future research. 4. An efficient localization model that is able to pinpoint the 3D locations of five key brain structures that are examined in a routine clinical examination. The predictions correlate with the ground truth: the average centre deviation is 1.8 ± 1.4 mm, and the size difference between them is 1.9 ± 1.5 mm. The application of this model may greatly reduce the time required for routine examination in clinical practice. 5. A 3D affine registration pipeline. Leveraging the power of convolutional neural networks, the model takes raw 3D brain images as input and geometrically transforms fetal brains into a unified coordinate system (proposed as a Fetal Brain Talairach system). The integration of these algorithms into computer-assisted analysis tools may greatly reduce the time and effort to evaluate 3D fetal neurosonography for clinicians. Furthermore, they will assist understanding of fetal brain maturation by distilling 2D/3D information directly from the uterus.

Page generated in 0.0598 seconds