• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 287
  • 101
  • 33
  • 30
  • 20
  • 19
  • 10
  • 10
  • 9
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 637
  • 155
  • 124
  • 99
  • 93
  • 91
  • 63
  • 61
  • 61
  • 52
  • 51
  • 50
  • 46
  • 44
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Heterodyne Arrays for Terahertz Astronomy

Kloosterman, Jenna Lynn January 2014 (has links)
The clouds of gas and dust that constitute the Interstellar Medium (ISM) within the Milky Way and other galaxies can be studied through the spectral lines of the atoms and molecules. The ISM follows a lifecycle in which each of its phases can be traced through spectral lines in the Terahertz (THz) portion of the electromagnetic spectrum, loosely defined as 0.3 - 3 THz. Using the high spectral resolution afforded by heterodyne instruments, astronomers can potentially disentangle the large-scale structure and kinematics within these clouds. In order to study the ISM over large size scales, large format THz heterodyne arrays are needed. The research presented in this dissertation focuses on the development of two heterodyne array receiver systems for ISM studies, SuperCam and a Super-THz (>3 THz) receiver. SuperCam is a 64-pixel heterodyne imaging array designed for use on ground-based submillimeter telescopes to observe the astrophysically important CO J=3-2 emission line at 345 GHz. The SuperCam focal plane stacks eight, 1x8 mixer subarrays. Each pixel in the array has its own integrated superconductor-insulator-superconductor (SIS) mixer and Low Noise Amplifier (LNA). In spring 2012, SuperCam was installed on the University of Arizona Submillimeter Telescope (SMT) for its first engineering run with 32 active pixels. A second observing run in May 2013 had 52 active pixels. With the outliers removed, the median double sideband receiver temperature was 104 K. The Super-THz receiver is designed to observe the astrophysically important neutral atomic oxygen line at 4.7448 THz. The local oscillator is a third-order distributed feedback Quantum Cascade Laser operating in continuous wave mode at 4.741 THz. A quasi-optical hot electron bolometer is used as the mixer. We record a double sideband receiver noise temperature of 815 K, which is ~7 times the quantum noise limit and an Allan variance time of 15 seconds at an effective noise fluctuation bandwidth of 18 MHz. Heterodyne performance is confirmed by measuring a methanol line spectrum. By combining knowledge of large array formats from SuperCam and quasi-optical mixers, initial tests and designs are presented to expand the single pixel 4.7 THz receiver into a quasi-optical 16-pixel array.
352

NEW ASPECTS OF HYDRATE CONTROL AT NORTHERN GAS AND GAS CONDENSATE FIELDS OF NOVATEK

Yunosov, Rauf, Istomin, Vladimir, Gritsishin, Dmitry, Shevkunov, Stanislav 07 1900 (has links)
A thermodynamic inhibitor - methanol is used for hydrates control both at gas-gathering pipelines and gas conditioning / treatment field plants of Novatek JSC. Due to severe climate conditions and absence of serious infrastructure high operation costs for hydrate control take place. For reducing inhibitor losses some new technological solutions were proposed including recycling and regeneration of saturated methanol. A small module for producing methanol at field conditions was designed. Technological schemes for methanol injection and recirculation are discussed. These technologies reduce methanol losses. Small methanol-producing plant at Yurkharovskoe gas-condensate field (12.5 million ton methanol per year) integrated with field gas treatment plant is presented. The technology includes producing converted gas (syngas) from natural gas, catalytic process for raw methanol synthesis and rectification of raw methanol at final stage. Some particularities of the integrated technology are as follows. Not needs for preliminary purification of required raw materials (natural gas and water). Dried natural gas after conditioning (without any traces of sulfuric compounds) and pure water from simplified water treatment block are used. Rectification of raw methanol is combined with rectification of saturated methanol from gas treatment plant. Economic estimations show that the integrated methanol-producing technology and optimization of methanol circulation in technological processes essentially reduce capital and operational costs for hydrate control at northern gas and gas-condensate fields.
353

Metanolio kuro elemento statinių charakteristikų tyrimas / Methanol fuel cell static characteristic and power characteristic research

Bagdonaitė, Ernesta 02 September 2010 (has links)
Bakalauro darbą „Metanolio kuro elemento statinių charakteristikų tyrimas“ sudaro įvadas, keturi skyriai, išvados bei rekomendacijos. Darbo apimtis 33 lapai. Likusioji dalis pateikiami priedai (eksperimento rezultatai). Darbe išanalizuotos metanolio kuro elemento voltamperinės bei galių charakteristikos, esant skirtingoms metanolio koncentracijos tirpalams. Įvadinėje dalyje iškeliamas darbo tikslas, uždaviniai, problematika bei tematikos aktualumas. Pirmame skyriuje aptariami kuro elementai, jų veikimo principai, panaudojimas. Antrame skyriuje aptariamas tiesioginio veikimo metanolio kuro elementas. Sekantis skyrius skirtas eksperimento matavimo metodikai, o ketvirtame skyriuje pateikiami eksperimento metu gauti rezultatai naudojant metanolio kuro elementą, esat skirtingoms metanolio koncentracijos tirpalams. / The bachelor’s thesis “Methanol fuel cell static characteristic and power characteristic research” consists of the introduction, 3 sections, conclusions and recommendations. The thesis comprises 33 pages. The rest of the accessories (experimental results). At the thesis is presented analysis methanol fuel cell power characteristic and performance at different methanol concentration solutions. The introduction sets the problem, the aims, the goals of the study and relevance of the topic. The first chapter is devoted to fuel cells, their operating principles to use. The second section deals with the direct methanol fuel cell operation. Next chapter for the experimental measurement methods, and the fourth section presents the experimental results obtained using methanol fuel cell, you are a different concentration of methanol solutions.
354

Study of UV/Chlorine Photolysis in regard to the Advanced Oxidation Processes (AOPs)

Jin, Jing Unknown Date
No description available.
355

Synthesis of a Novel Organoplatinum (II) Compound

Nesbitt, Elizabeth 01 January 2015 (has links)
Preliminary NMR data indicate that a new platinum compound, assigned (TpyO)PtMe (TpyO = 2,6-bis-(2’pyridyl)-4-pyridonate), can be synthesized by the addition of impure trans-(DMSO)2PtMeCl to impure 2,6-bis(2’-pyridyl)-4-hydroxypyridine (TpyOH) in the presence of NEt3 in about 10% yield. It is likely that the yield could be increased by using purified TpyOH and (DMSO)2PtMeCl. The metalation step of the synthesis was also attempted using (COD)PtMeCl but was unsuccessful with either Na2CO3 or NEt3 as bases, most likely due to the chelate effect of the bidentate COD. Future work with (TpyO)PtMe will include the addition of H+/D+ to generate the platinum (IV) complex, [(TpyO)Pt(Me)(H)]+, and/or the σ-complex [(TpyO)Pt(Me-H)]+ in order to examine the kinetic, isotope, and thermodynamic effects of the resulting reductive elimination reaction.
356

The antioxidant properties of the methanol extract of Cotyledon orbiculata L. var orbiculata (Haw.) DC. Leaves / Wessel Cornelius Roux

Roux, Wessel Cornelius January 1900 (has links)
South Africa is a country of great diversity. Different climate zones and a host of different habitats make South Africa the perfect platform for rich floral diversity. This floral diversity lends itself to the study of natural products by discovering new natural drugs that can be used in the treatment of many illnesses. Studies into the antioxidant properties of plants that are used in traditional medicine are an important aspect of research to determine the rationale of the use of plants by traditional healers. Many neurodegenerative diseases, like epilepsy, Parkinson s and Alzheimer s diseases, are linked to oxidative stress. Antioxidants could play a major role as neuroprotective agents and could alter the progression of these diseases. Epilepsy is one of the world s most prevalent central nervous system disorders and affects more than seventy per one thousand children in South Africa. Most of these cases are people in rural areas of South Africa where communities rely on the use of traditional medicine. Cotyledon orbiculata L. var orbiculata (Haw.) DC. is widely used in traditional medicine to treat epilepsy and other central nervous system disorders. The need to screen these plants for activity and toxicity is very important to understand the complex mechanism of action in the treatment of patients. In this study the methanol extract and three different fractions of the methanol extract of Cotyledon orbiculata were used to test for antioxidant activity and toxicity towards neuroblastoma cells. The freeze dried leaves of Cotyledon orbiculata were extracted with methanol using a Soxhlet apparatus. The concentrated extracts were analysed using HPLC (high pressure liquid chromatography) and three major peaks were selected for isolation. Three assays were performed to assess the antioxidant activity and toxicity of the isolated compounds. The thiobarbituric acid assay (TBA) quantifies the extent of the inhibition of lipid peroxidation in rat brain homogenates by the isolated fractions. All of the samples were able to attenuate lipid peroxidation as seen from the results obtained from the TBA assay. The methanol extract showed the best attenuation of lipid peroxidation in the rat brain homogenate with fraction 1 and 2 showing greater attenuation of lipid peroxidation than fraction 3. The nitroblue tetrazolium assay (NBT) quantifies the ability of the fractions to scavenge superoxide radicals in a rat brain homogenate. All samples were able to scavenge superoxide radicals as indicated by the NBT assay. The methanol extract showed the best superoxide scavenging abilities in the assay whereas fraction 1 showed better scavenging abilities than fraction 2 and 3. The 3–(4,5–dimethylthiazol–2–yl)–2,5–diphenyltetrazolium bromide assay (MTT) indicates the toxicity of the fractions towards neuroblastoma cells. The methanol extract and fraction 2 in the highest concentration of 10 mg/ml were the only samples that showed toxicity towards neuroblastoma cells. The molecular structure of a compound from fraction 2 was determined by using nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), and mass spectroscopy (MS). This compound was identified as diethyl malate. Diethyl malate is an artefact that is generated in HPLC procedures in the presence of malic acid (which naturally occurs in the leaves of Cotyledon orbiculata) and ethanol. The methanol extract of Cotyledon orbiculata has high antioxidant activity and could be due to the presence of malic acid in the leaves of the plant. The rationale in the use of Cotyledon orbiculata in the treatment of epilepsy could not be determined due to the isolation of an artefact, diethyl malate, obtained from the fraction. Further research should include methods to prevent artefact formation and purification of the samples that are obtained. / Thesis (MSc (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2012.
357

The antioxidant properties of the methanol extract of Cotyledon orbiculata L. var orbiculata (Haw.) DC. Leaves / Wessel Cornelius Roux

Roux, Wessel Cornelius January 1900 (has links)
South Africa is a country of great diversity. Different climate zones and a host of different habitats make South Africa the perfect platform for rich floral diversity. This floral diversity lends itself to the study of natural products by discovering new natural drugs that can be used in the treatment of many illnesses. Studies into the antioxidant properties of plants that are used in traditional medicine are an important aspect of research to determine the rationale of the use of plants by traditional healers. Many neurodegenerative diseases, like epilepsy, Parkinson s and Alzheimer s diseases, are linked to oxidative stress. Antioxidants could play a major role as neuroprotective agents and could alter the progression of these diseases. Epilepsy is one of the world s most prevalent central nervous system disorders and affects more than seventy per one thousand children in South Africa. Most of these cases are people in rural areas of South Africa where communities rely on the use of traditional medicine. Cotyledon orbiculata L. var orbiculata (Haw.) DC. is widely used in traditional medicine to treat epilepsy and other central nervous system disorders. The need to screen these plants for activity and toxicity is very important to understand the complex mechanism of action in the treatment of patients. In this study the methanol extract and three different fractions of the methanol extract of Cotyledon orbiculata were used to test for antioxidant activity and toxicity towards neuroblastoma cells. The freeze dried leaves of Cotyledon orbiculata were extracted with methanol using a Soxhlet apparatus. The concentrated extracts were analysed using HPLC (high pressure liquid chromatography) and three major peaks were selected for isolation. Three assays were performed to assess the antioxidant activity and toxicity of the isolated compounds. The thiobarbituric acid assay (TBA) quantifies the extent of the inhibition of lipid peroxidation in rat brain homogenates by the isolated fractions. All of the samples were able to attenuate lipid peroxidation as seen from the results obtained from the TBA assay. The methanol extract showed the best attenuation of lipid peroxidation in the rat brain homogenate with fraction 1 and 2 showing greater attenuation of lipid peroxidation than fraction 3. The nitroblue tetrazolium assay (NBT) quantifies the ability of the fractions to scavenge superoxide radicals in a rat brain homogenate. All samples were able to scavenge superoxide radicals as indicated by the NBT assay. The methanol extract showed the best superoxide scavenging abilities in the assay whereas fraction 1 showed better scavenging abilities than fraction 2 and 3. The 3–(4,5–dimethylthiazol–2–yl)–2,5–diphenyltetrazolium bromide assay (MTT) indicates the toxicity of the fractions towards neuroblastoma cells. The methanol extract and fraction 2 in the highest concentration of 10 mg/ml were the only samples that showed toxicity towards neuroblastoma cells. The molecular structure of a compound from fraction 2 was determined by using nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), and mass spectroscopy (MS). This compound was identified as diethyl malate. Diethyl malate is an artefact that is generated in HPLC procedures in the presence of malic acid (which naturally occurs in the leaves of Cotyledon orbiculata) and ethanol. The methanol extract of Cotyledon orbiculata has high antioxidant activity and could be due to the presence of malic acid in the leaves of the plant. The rationale in the use of Cotyledon orbiculata in the treatment of epilepsy could not be determined due to the isolation of an artefact, diethyl malate, obtained from the fraction. Further research should include methods to prevent artefact formation and purification of the samples that are obtained. / Thesis (MSc (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2012.
358

Modeling of complex molecules adsorbed on copper surfaces

Wei, Daniel S. 12 January 2015 (has links)
There has been growing demands towards the efficient production of enantiopure compounds through either asymmetric synthesis or separation from racemic mixtures. Recent studies have examined numerous different methods that may address this challenge. One of these methods involved the interaction of chiral molecules on achiral metal surfaces such as copper to create chiral templates while another method utilizes the interaction of chiral molecules on intrinsically chiral surfaces. Earlier studies using nonhybrid Density Functional Theory (DFT) functional has provided some insights into the geometric structures and relative energies of some of these interactions, but it failed to achieve quantitative agreement with experimental studies. Using dispersion corrected DFT functionals, this thesis present a study of chemisorbed dense adlayers of glycine and alanine on Cu(110) and Cu(3,1,17), physisorbed R-3-methycyclohexanone (R-3MCHO) on Cu(100), Cu(110), Cu(111), Cu(221), and Cu(643)R, and the hydrogenation of formaldehyde and methoxide on Zn or Zr heteroatoms promoted Cu surfaces. In the dense glycine and alanine adlayer study, we have resolved a disagreement between experimental observation made on LEED, STM, and XPD, and we showed that heterochiral and homochiral glycine adlayer coexist on Cu(110). Our model failed to show the minute enantiospecificity for dense alanine adlayer on Cu(3,1,17) which indicated a numeric limitation for computational modeling of surface adsorption. In the physisorbed system, the dispersion corrected methods calculated adsorption energies were in better quantitative agreement with the experimentally observed values than the nonhybrid functionals, but it also created a significant overestimation of total adsorption energies. On the other hand, our model had indicated a previously unexpected adsorbate-induced surface reconstruction on Cu(110). This is promising news in term of computational modeling's capability in examining surface-adsorbate interaction on an atomic scale. As for the hydrogenation of formaldehyde and methoxide on copper surfaces, the model showed that the increased binding strength between the reaction intermediates and the heteroatom promoted copper surfaces to be the primary contributor of the increased reaction rates. Furthermore, our model had also indicated that while clustered heteroatoms are relatively rare, a significant portion of reaction takes place near these clustered structures. It is our hope that the results and techniques presented in this thesis can be used to better understand and predict the interaction of more complex surface-adsorbate interactions.
359

The development and fabrication of miniaturized direct methanol fuel cells and thin-film lithium ion battery hybrid system for portable applications

Prakash, Shruti 12 March 2009 (has links)
In this work, a hybrid power module comprising of a direct methanol fuel cell (DMFC) and a Li-ion battery has been proposed for low power applications. The challenges associated with low power and small DMFCs were investigated and the performance of commercial Li-ion batteries was evaluated. At low current demand (or low power), methanol leakage through the proton exchange membrane (PEM) reduces the efficiency of a DMFC. Consequently, a proton conducting methanol barrier layer made from phospho-silica glass(PSG) was developed. At optimized deposition conditions, the PSG layers had low methanol permeability and moderate conductivity. The accumulation of CO2 inside the fuel tank was addressed by fabricating CO2 vents. Poly (dimethyl siloxane) (PDMS) and poly (1-trimethyl silyl propyne) (PTMSP) base polymers were used as the backbone material for these vents. The selectivity of CO2 transport through the vent was further enhanced by using additives like 1, 6-divinylperfluorohexane. Finally, the effects of self-discharge and voltage loss were evaluated for Panasonic coin cells and thin film LiPON cells. It was observed that the thin film battery outperformed the others in terms of low energy loss. Nonetheless, the performance of small Panasonic coin cells with vanadium oxide cathode was comparable at low discharge rates of less than 0.01% depth of discharge. Lastly, it was also observed that the batteries have stable cycles at low discharge rates.
360

Batch reactors for scalable hydrogen production

Damm, David Lee 08 July 2008 (has links)
A novel batch reactor concept is proposed for the catalytic production of hydrogen in distributed and portable applications. In the proposed CHAMP (CO2/H2 Active Membrane Piston) reactor, a batch of hydrocarbon or synthetic fuel is held in the reaction chamber where it reacts to produce hydrogen with simultaneous removal of the hydrogen by permeation through an integrated, selective membrane. These processes proceed to the desired level of completion at which point the reaction chamber is exhausted and a fresh batch of fuel mixture brought in. Unique to the CHAMP reactor is the ability to precisely control the residence time, as well as the ability to compress the reaction chamber dynamically, or mid-cycle, in order to increase the instantaneous hydrogen yield rate. An idealized reactor model demonstrates that the ideal limits of performance (in the absence of transport limitations) exceed those of comparable continuous flow designs. A comprehensive, coupled, transport-kinetics model is used to quantify the effects of mass transport limitations on reactor performance and search the design parameter space for optimal points. Two modes of operation are studied: fixed-volume mode wherein the piston is stationary and constant-pressure mode in which the rate of compression matches the permeation of hydrogen through the membrane. Finally, to validate these numerical models and confirm our understanding of the key operating principles, prototype reactors were built and experimentally characterized.

Page generated in 0.0273 seconds