• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Riding an e-scooter at nighttime is more dangerous than at daytime

Shah, Nitesh R., Cherry, Christopher R. 28 December 2022 (has links)
With rapidly increasing e-scooter usage in the United States [1], a growing number of studies aim to understand the safety aspect of these emerging modes. The existing literature has a limited understanding of time-of-day and seasonal patterns of e-scooter crashes. While many e-scooter safety policies are based on the number of crashes [2, 3], accounting for exposure provides a measure of risk to inform effective preventive strategies [4]. This study focuses on motor-vehicle involved crashes since they constitute the most severe and fatal injuries. We compared daytime and nighttime motor-vehicle involved e-scooter crashes and combined them with micromobility trip data to generate exposure variables and estimate crash risk. The key research question of this paper is as follows: 1. Are crashes or crash rates disproportionately higher at night than in the day? [From: Introduction]
2

E-scooter Rider Detection System in Driving Environments

Apurv, Kumar 08 1900 (has links)
Indianapolis / E-scooters are ubiquitous and their number keeps escalating, increasing their interactions with other vehicles on the road. E-scooter riders have an atypical behavior that varies enormously from other vulnerable road users, creating new challenges for vehicle active safety systems and automated driving functionalities. The detection of e-scooter riders by other vehicles is the first step in taking care of the risks. This research presents a novel vision-based system to differentiate between e-scooter riders and regular pedestrians and a benchmark dataset for e-scooter riders in natural environments. An efficient system pipeline built using two existing state-of-the-art convolutional neural networks (CNN), You Only Look Once (YOLOv3) and MobileNetV2, performs detection of these vulnerable e-scooter riders.
3

E-scooter Rider Detection System in Driving Environments

Kumar Apurv (11184732) 06 August 2021 (has links)
E-scooters are ubiquitous and their number keeps escalating, increasing their interactions with other vehicles on the road. E-scooter riders have an atypical behavior that varies enormously from other vulnerable road users, creating new challenges for vehicle active safety systems and automated driving functionalities. The detection of e-scooter riders by other vehicles is the first step in taking care of the risks. This research presents a novel vision-based system to differentiate between e-scooter riders and regular pedestrians and a benchmark dataset for e-scooter riders in natural environments. An efficient system pipeline built using two existing state-of-the-art convolutional neural networks (CNN), You Only Look Once (YOLOv3) and MobileNetV2, performs detection of these vulnerable e-scooter riders.<br>
4

Data Acquisition and Processing Pipeline for E-Scooter Tracking Using 3D LIDAR and Multi-Camera Setup

Siddhant Srinath Betrabet (9708467) 07 January 2021 (has links)
<div><p>Analyzing behaviors of objects on the road is a complex task that requires data from various sensors and their fusion to recreate movement of objects with a high degree of accuracy. A data collection and processing system are thus needed to track the objects accurately in order to make an accurate and clear map of the trajectories of objects relative to various coordinate frame(s) of interest in the map. Detection and tracking moving objects (DATMO) and Simultaneous localization and mapping (SLAM) are the tasks that needs to be achieved in conjunction to create a clear map of the road comprising of the moving and static objects.</p> <p> These computational problems are commonly solved and used to aid scenario reconstruction for the objects of interest. The tracking of objects can be done in various ways, utilizing sensors such as monocular or stereo cameras, Light Detection and Ranging (LIDAR) sensors as well as Inertial Navigation systems (INS) systems. One relatively common method for solving DATMO and SLAM involves utilizing a 3D LIDAR with multiple monocular cameras in conjunction with an inertial measurement unit (IMU) allows for redundancies to maintain object classification and tracking with the help of sensor fusion in cases when sensor specific traditional algorithms prove to be ineffectual when either sensor falls short due to their limitations. The usage of the IMU and sensor fusion methods relatively eliminates the need for having an expensive INS rig. Fusion of these sensors allows for more effectual tracking to utilize the maximum potential of each sensor while allowing for methods to increase perceptional accuracy. </p> <p>The focus of this thesis will be the dock-less e-scooter and the primary goal will be to track its movements effectively and accurately with respect to cars on the road and the world. Since it is relatively more common to observe a car on the road than e-scooters, we propose a data collection system that can be built on top of an e-scooter and an offline processing pipeline that can be used to collect data in order to understand the behaviors of the e-scooters themselves. In this thesis, we plan to explore a data collection system involving a 3D LIDAR sensor and multiple monocular cameras and an IMU on an e-scooter as well as an offline method for processing the data to generate data to aid scenario reconstruction. </p><br></div>

Page generated in 0.1586 seconds