• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molekulare Regulationsmechanismen in der Entstehung der dreidimensionalen Matrixarchitektur in Biofilmen von Escherichia coli

Polenz, Thi Kim Loan 17 October 2023 (has links)
Diese Arbeit erlaubt einen erweiterten Einblick in die Regulation c-di-GMP-abhängiger Prozesse im Rahmen der Makrokolonieentwicklung von E. coli K12 AR3110, darunter die heterogene Expression des Masterregulators der Biofilmbildung CsgD und die räumlich differenzierte Matrixproduktion. Es konnte erstmals die Verteilung des Signalmoleküls c-di-GMP dargestellt werden und auch die damit einhergehe Dynamik der RdcA/B-DgcE-vermittelten Expression von csgD innerhalb einer Makrokolonie aufgeklärt werden. Zusätzlich konnten weitere Mechanismen in der Kontrolle der CsgD-Aktivität und Proteolyse identifiziert werden; darunter seine zelluläre Aggregation in spezifischen Zonen der Makrokolonie und sein proteolytischer Abbau (durch Lon-Proteasen). Diese Ergebnisse lassen eine präzise gesteuerte Koordination beschriebener Prozesse annehmen, die durch die Entstehung vertikaler Nähr- und Sauerstoffgradienten vermittelt wird. In ihrer Gesamtheit führen sie zu einer räumlich geordneten Produktion und Anordnung von Curlifasern und pEtN-Cellulose in der Makrokolonie, die zur Ausbildung der komplexen dreidimensionalen Matrixarchitektur führen. Jedes einzelne Matrixelement weist dabei eine charakteristische Zusammensetzung und Anordnung auf, die mit spezifischen Materialeigenschaften einhergehen. So bilden sie eine biofilminterne Gerüststruktur aus, die als mechanische Grundlage für die Auffaltung angenommen werden kann. Mikroskopische Analysen konnten matrixfreie, lokal proliferierende Zellen als treibende Kraft darstellen. Sie sind für den Aufbau und auch den Ausgleich eines Kompressionsdrucks verantwortlich, der die Auffaltung überhaupt verursacht. In ihrer Gesamtheit zeigt diese Arbeit, dass sowohl matrixfreie als auch matrixproduzierende Zellen eine horizontale Ausbreitung der Kolonie ermöglichen, ohne den Biofilm und darin befindliche Zellen zu beeinträchtigen. Auf diese Weise sind sie essenziell für die Aufrechterhaltung der physischen Integrität und Homöostase der Makrokolonie. / This work allows further insight into the regulation of c-di-GMP-dependent processes within the development of macrocolonies of E. coli K12 AR3110, including the heterogeneous expression of the master regulator CsgD and spatially differentiated matrix production. For the first time, the distribution of second messenger molecule c-di-GMP was visualized along the macrocolony axis. Furthermore, this study was able to elucidate the dynamics of RdcA/B-DgcE-controlled csgD expression and find additional mechanisms in the control of CsgD activity and proteolysis; including its cellular aggregation in specific zones and its proteolytic degradation by Lon-Preoteases. Overall, these results suggest a very precise coordination of cellular processes that depend on the presence of vertical oxygen and nutrient gradients which lead to a spatially defined production and arrangement of curlifibres as well as pEtN-Cellulose within the macrcocolony. This results in the formation of a complex three-dimensional matrix architecture with each individual matrix element exhibiting a characteristic composition and arrangement associated with specific material properties. That way they form a biofilm-internal scaffolding structure that represents the mechanical basis for macrocolony folding. Microscopic analyses were able to identify matrix-free and locally proliferating cells as driving force. They seem to be responsible for both creating as well as releasing pressure on matrix structures that causes buckling up in the first place. Taken together, this work shows that both matrix-free, proliferating cells and matrix-producing cells enable the horizontal spreading of the macrocolony without affecting the biofilm and cells located within. Thus, they are essential for maintaining physical integrity and homeostasis within the macrocolony.
2

Obtenção e caracterização de linhagem de Escherichia coli adaptada ao glicerol bruto proveniente da síntese de biodiesel por engenharia evolutiva

Miranda, Letícia Passos 31 March 2016 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2017-01-24T10:55:13Z No. of bitstreams: 1 DissLPMoc.pdf: 5018835 bytes, checksum: 6e118e7b00ba50c95eaca8d0df293f3a (MD5) / Approved for entry into archive by Camila Passos (camilapassos@ufscar.br) on 2017-02-08T10:50:35Z (GMT) No. of bitstreams: 1 DissLPMoc.pdf: 5018835 bytes, checksum: 6e118e7b00ba50c95eaca8d0df293f3a (MD5) / Approved for entry into archive by Camila Passos (camilapassos@ufscar.br) on 2017-02-08T10:51:51Z (GMT) No. of bitstreams: 1 DissLPMoc.pdf: 5018835 bytes, checksum: 6e118e7b00ba50c95eaca8d0df293f3a (MD5) / Made available in DSpace on 2017-02-08T10:51:59Z (GMT). No. of bitstreams: 1 DissLPMoc.pdf: 5018835 bytes, checksum: 6e118e7b00ba50c95eaca8d0df293f3a (MD5) Previous issue date: 2016-03-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Biodiesel is a renewable fuel and its production generate raw glycerol (RG) as main byproduct. The use of RG as carbon source in microorganism cultivations poses as an alternative to add value and reduce the environmental impact of this residue. However, RG impurities (salts, esters, alcohol and soap) can inhibit cell growth. Techniques that aims adapting microorganisms to environments containing contaminants by adaptive evolution have been employed to overcome inhibition problems. Adaptation strategies allows imposing a certain selective pressure upon the population, favoring the appearance of mutants and selection of most beneficial mutations, which will make the cell more suited to develop itself in a hostile environment. This work employed Adaptive Evolution methodology to obtain an E. coli K12 strain adapted to RG concentrated by rotary evaporation (RGRota). Cultivations were carried out in plates (E. coli – USP strain) incubated at 37 ºC, as well as shaken flasks (E. coli – UMinho strain), kept at 37 ºC and 300 rpm, involving transfers to defined media gradually enriched with RGRota. Obtained evolved strain as well as the wild-type strain E. coli – UMinho were characterized in cultivations using 2 L, bench-scale bioreactor, equipped with monitoring and control system. During shaken flask experiments, growth was followed by optical density (OD) readings. In bioreactor cultures, samples were withdrawal to analyze cell concentration of the suspension (OD and dry cell weight), concentrations of glycerol, ethanol and organic acids (liquid chromatography), concentration of viable cells (colony forming units counting) and morphology. Cultures characterization were carried out with E. coli – USP in shaken flasks, the values of maximum specific growth rate (μmax) remained between 0.40 e 0.45 h-1 and they showed little influence of strain or media composition. These results suggest that the selected strain did not have differentiated characteristics from the wild-type strain. For E. coli – UMinho, two adaptation strategies were evaluated: successive transfer during exponential growth phase (OD = ~2.5) and during stationary growth phase (OD = ~10). In both cases cells evolved, showing increased μmax values, with more homogeneous populations being observed for adaptation conducted under the first strategy. After 26 days of adaptation, corresponding to 534 generations, an evolved strain, exhibiting μmax of 0.60 h-1 and capable of growing in medium containing 29 g/L of glycerol from RGRota was selected by the methodology of successive transfers in exponential phase. This growth rate was 27.6 % superior to that achieved by the wild-type strain (0.47 h-1). Evolved and wild-type strains were cultivated in bioreactor, containing defined medium prepared with GBRota to have 40 g/L of glycerol. The evolved one maintained μmáx of 0.61 h-1. Acetate formation was observed, with yield of 0.19 g acetate/g glycerol, which caused growth inhibition and limited biomass yield to 0.26 gbiomass/gglycerol. When the wild-type strain was cultivated in bioreactor, exponential growth started after 24 h of lag phase and it presented μmax of 0.28 h-1, biomass yield of 0,39 gbiomass/gglycerol and acetate yield of 0.19 gacetate/gglycerol. The evolved strain obtained, capable of growing in the biodiesel production residue, showed a μmax value similar to the best results reported in the literature for E. coli adaptation in pure glycerol (0.7 h-1), what demonstrates the successful application of the adaptive evolution methodology. Acetate accumulation can be reduced by Genetic Engineering techniques to manipulate metabolic pathways and this will lead to development of an industrial strain which can be employed as a platform of high value products using unrefined glycerol as substrate. / O biodiesel é um combustível renovável cuja produção gera o glicerol bruto (GB) como principal subproduto. O aproveitamento de GB como fonte de carbono em cultivos de microrganismos se apresenta como uma alternativa para agregar valor e reduzir o impacto ambiental deste resíduo. Contudo, as impurezas do GB (sais, ésteres, álcool e sabão) podem inibir o crescimento das células. Técnicas que visam adaptar os microrganismos via evolução adaptativa a ambientes contendo contaminantes vêm sendo empregadas para contornar problemas de inibição. As estratégias de adaptação permitem impor uma certa pressão seletiva sobre a população, favorecendo o aparecimento de mutantes e a seleção de mutações benéficas, que tornam a célula mais apta a se desenvolver em um ambiente hostil. O trabalho empregou a metodologia de Evolução Adaptativa para obter uma linhagem de E. coli K12 adaptada ao GB concentrado por rotaevaporação (GBRota). Os cultivos foram realizados tanto em placas (linhagem E. coli – USP) incubadas a 37ºC, como em frascos agitados (linhagem E. coli – UMinho), mantidos a 37ºC e 300 rpm, envolvendo transferências para meios definidos gradualmente enriquecidos com GBRota. A linhagem evoluída obtida assim como a linhagem selvagem E. coli – UMinho foram caracterizadas em cultivos em biorreator de bancada de 2 L, dotado de sistema de monitoramento e controle. Durante os experimentos em frascos agitados, o crescimento foi acompanhado por leitura de densidade ótica (DO). Nos cultivos em biorreator, amostras foram coletadas para análises de concentração celular da suspensão (DO e massa seca), da concentração de glicerol, etanol e ácidos orgânicos (por cromatografia líquida), da concentração de células viáveis (por contagem de unidades formadoras de colônia) e de morfologia. Para os cultivos de caracterização da E. coli – USP realizados em frascos agitados, os valores da velocidade máxima específica de crescimento (max) permaneceram entre 0,40 e 0,45 h-1, sendo pouco influenciados pela linhagem ou pela composição dos meios, sugerindo que a metodologia adotada para adaptação em placa não foi eficiente, já que a linhagem selecionada não possuía características diferenciadas em relação à linhagem selvagem. Para a E. coli – UMinho foram avaliadas duas estratégias de adaptação: transferências sucessivas na fase exponencial do cultivo (DO = ~2,5) e na fase estacionária (DO = ~10). Em ambos os casos, as células evoluíram, apresentando aumento nos valores de max., sendo que populações mais homogêneas foram observadas na adaptação realizada pela primeira estratégia. Após 26 dias de adaptação, correspondendo a 534 gerações, foi selecionada pela metodologia de transferências sucessivas na fase exponencial, uma linhagem evoluída apresentando velocidade máxima específica de 0,60 h-1, resultado superior em 27,6% ao da linhagem selvagem (0,47h-1), capaz de crescer em meio contendo ~30 g/L de glicerol proveniente do GBRota. As linhagens selvagem e evoluída foram cultivadas em biorreator contendo meio preparado com GBRota na concentração de 40 g/L de glicerol. A linhagem evoluída manteve o μmáx de 0,61 h-1. Foi observada formação de acetato, com rendimento de 0,19 gacetato/gglicerol, o que causou inibição do crescimento e limitou o rendimento em biomassa a 0,26 gbiomassa/gglicerol. Enquanto que, para a linhagem selvagem o cultivo em biorreator apresentou uma fase lag de 24 h, um max de 0,28 h-1, rendimento em biomassa de 0,39 gacetato/gglicerol e rendimento em acetato 0,19 gacetato/gglicerol. A linhagem evoluída obtida no presente trabalho, capaz de crescer no resíduo da produção de biodiesel, apresenta max semelhante aos melhores resultados relatados na literatura para adaptação de E. coli em glicerol puro (0,7 h-1), demonstrando o sucesso da aplicação da metodologia de evolução adaptativa. O acúmulo de acetato pode ser amenizado utilizando técnicas de Engenharia Genética para manipulação das vias metabólicas e permitindo o desenvolvimento de uma linhagem industrial que poderá ser empregada como plataforma para obtenção de produtos de alto valor agregado usando o glicerol não refinado como substrato.
3

Effects of Moderate Electric Field Plus Heat Pretreatment on Bacterial Inactivation in Whole Shell Hen Eggs by Ozone

Kasler, David R. 08 October 2015 (has links)
No description available.

Page generated in 0.0553 seconds