• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bacterial display systems for engineering of affinity proteins

Fleetwood, Filippa January 2014 (has links)
Directed evolution is a powerful method for engineering of specific affinity proteins such as antibodies and alternative scaffold proteins. For selections from combinatorial protein libraries, robust and high-throughput selection platforms are needed. An attractive technology for this purpose is cell surface display, offering many advantages, such as the quantitative isolation of high-affinity library members using flow-cytometric cell sorting. This thesis describes the development, evaluation and use of bacterial display technologies for the engineering of affinity proteins. Affinity proteins used in therapeutic and diagnostic applications commonly aim to specifically bind to disease-related drug targets. Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is a critical process in various types of cancer and vascular eye disorders. Vascular Growth Factor Receptor 2 (VEGFR2) is one of the main regulators of angiogenesis. The first two studies presented in this thesis describe the engineering of a biparatopic Affibody molecule targeting VEGFR2, intended for therapeutic and in vivo imaging applications. Monomeric VEGFR2-specific Affibody molecules were generated by combining phage and staphylococcal display technologies, and the engineering of two Affibody molecules, targeting distinct epitopes on VEGFR2 into a biparatopic construct, resulted in a dramatic increase in affinity. The biparatopic construct was able to block the ligand VEGF-A from binding to VEGFR2-expressing cells, resulting in an efficient inhibition of VEGFR2 phosphorylation and angiogenesis-like tube formation in vitro. In the third study, the staphylococcal display system was evaluated for the selection from a single-domain antibody library. This was the first demonstration of successful selection from an antibody-based library on Gram-positive bacteria. A direct comparison to the selection from the same library displayed on phage resulted in different sets of binders, and higher affinities among the clones selected by staphylococcal display. These results highlight the importance of choosing a display system that is suitable for the intended application. The last study describes the development and evaluation of an autotransporter-based display system intended for display of Affibody libraries on E. coli. A dual-purpose expression vector was designed, allowing efficient display of Affibody molecules, as well as small-scale protein production and purification of selected candidates without the need for sub-cloning. The use of E. coli would allow the display of large Affibody libraries due to a high transformation frequency. In combination with the facilitated means for protein production, this system has potential to improve the throughput of the engineering process of Affibody molecules. In summary, this thesis describes the development, evaluation and use of bacterial display systems for engineering of affinity proteins. The results demonstrate great potential of these display systems and the generated affinity proteins for future biotechnological and therapeutic use. / <p>QC 20141203</p>
2

Bacterial Display of a Tau-Binding Affibody Construct:Towards Affinity Maturation

Ek, Moira January 2020 (has links)
Aggregation of microtubule-associated protein tau is involved in the pathology of several neurodegenerative diseases, including Alzheimer’s disease. The affibody TP4 has been shown to inhibit this aggregation process, and its target-binding positions were previously grafted onto a dimeric affibody scaffold, creating the sequestrin seqTP4. This project constitutes a part of the affinity maturation process of seqTP4, using two different bacterial display methods. An error-prone PCR library was first expressed on Staphylococcus carnosus cells for selection of variants with improved tau-binding properties, resulting in a library of 1.4×107 transformants. Flow cytometric tests indicated difficulties in the setup due to nonspecific interactions, and whereas several different approaches to alleviate the problems were investigated, two cell sorting attempts were ultimately unsuccessful. Subcloning of seqTP4 and the library to an Escherichia coli surface display vector resulted in functional surface expression of seqTP4 on E. coli JK321 and BL21 cells, and a BL21 library size of 1.6×109 transformants. An initial flow cytometric test of this library indicates the presence of improved tau-binding variants, paving the way for future cell sorting. / Aggregering av mikrotubuli-associerat protein tau är involverad i patologin av flera neurodegenerativa sjukdomar, däribland Alzheimers sjukdom. Affibodymolekylen TP4 har visat sig inhibera denna aggregeringsprocess, och överföring av dess målbindande positioner till ett dimeriskt affibodyprotein har tidigare gett upphov till seqTP4, en så kallad sequestrin. Detta projekt utgör ett led i processen att affinitetsmaturera seqTP4, med hjälp av två olika metoder för presentation av proteiner på ytan av bakterieceller. Ett error-prone PCR-bibliotek uttrycktes först på ytan av Staphylococcus carnosus-celler för selektion av varianter med ökad affinitet för tau, vilket resulterade i ett bibliotek av 1.4×107 transformanter. Flödescytometriska tester tydde på svårigheter i detta upplägg på grund av ospecifika interaktioner, och emedan flera olika angreppssätt för att förmildra dessa problem undersöktes, misslyckades slutligen två cellsorteringsförsök. Omkloning av seqTP4 och biblioteket till en vektor för ytpresentation på Escherichia coli resulterade i funktionellt ytuttryck av seqTP4 på E. coli JK321- och BL21-celler, och ett BL21-bibliotek bestående av 1.6×109 transformanter. Ett första flödescytometriskt test av detta bibliotek tyder på närvaron av varianter med förbättrad förmåga att binda tau, och vägen ligger nu relativt öppen för cellsortering.

Page generated in 0.0745 seconds