Spelling suggestions: "subject:"E3 ubiquitin ligase""
1 |
Characterization of the E3 Ubiquitin ligase EEL-1 in DNA Damage-induced Germ Line Apoptosis in C. elegansRoss, Ashley Jane 28 July 2010 (has links)
E3 ubiquitin ligases are important regulators of several cellular processes, including apoptosis. To determine the extent to which E3 ligases regulate DNA damage-induced apoptotic signalling in C. elegans, a high-throughput RNAi screen was performed in our laboratory. We identified the E3 ubiquitin ligase EEL-1 as a positive regulator of DNA damage-induced germ cell apoptosis. ARF-BP1, the mammalian EEL-1 ortholog, negatively regulates both the tumour suppressor protein p53 and the anti-apoptotic protein Mcl-1. In C. elegans, we found that eel-1 regulates DNA damage-induced germ cell apoptosis by a mechanism downstream of cep-1/p53 and upstream of ced-9/mcl-1. My results show that unlike ARF-BP1, EEL-1 does not regulate CED-9/Mcl-1 protein levels, suggesting a novel mechanism of apoptosis regulation in C. elegans for this E3 ligase. Unexpectedly, eel-1 causes synthetic sterility in ced-9 loss-of-function mutants that is suppressed by ablation of the Apaf-1 orthologue ced-4, suggesting an additional role for these genes in oogenesis.
|
2 |
Characterization of the E3 Ubiquitin ligase EEL-1 in DNA Damage-induced Germ Line Apoptosis in C. elegansRoss, Ashley Jane 28 July 2010 (has links)
E3 ubiquitin ligases are important regulators of several cellular processes, including apoptosis. To determine the extent to which E3 ligases regulate DNA damage-induced apoptotic signalling in C. elegans, a high-throughput RNAi screen was performed in our laboratory. We identified the E3 ubiquitin ligase EEL-1 as a positive regulator of DNA damage-induced germ cell apoptosis. ARF-BP1, the mammalian EEL-1 ortholog, negatively regulates both the tumour suppressor protein p53 and the anti-apoptotic protein Mcl-1. In C. elegans, we found that eel-1 regulates DNA damage-induced germ cell apoptosis by a mechanism downstream of cep-1/p53 and upstream of ced-9/mcl-1. My results show that unlike ARF-BP1, EEL-1 does not regulate CED-9/Mcl-1 protein levels, suggesting a novel mechanism of apoptosis regulation in C. elegans for this E3 ligase. Unexpectedly, eel-1 causes synthetic sterility in ced-9 loss-of-function mutants that is suppressed by ablation of the Apaf-1 orthologue ced-4, suggesting an additional role for these genes in oogenesis.
|
3 |
The Role of the E3 Ubiquitin Ligases Nedd4-1 and Nedd4-2 in Synaptic Transmission and PlasticityTakeda, Michiko 12 June 2012 (has links)
Nervenzellen sind hochspezialisierte Zellen, die an Synapsen miteinander verbunden sind, was die Übertragung von neuronalen Informationen erlaubt. Die Entwicklung von Synapsen und die Informationsverarbeitung und Gedächtnisbildung bei reifen Synapsen erfordert eine dynamische Umorganisation von neuronalen Netzwerken. Das beinhaltet die Bildung und Entfernung von Synapsen, Umsatz von synaptischen Proteinen und die Veränderung und Anpassung von synaptischer Erregungsübertragung. U. a. Ubiquitinierung, als regulatorische, posttranslationale Modifikation von Proteinen, könnte eine entscheidende Rolle für solche komplexe, synaptische Umorganisationen spielen. Nedd4-1, eine HECT-Typ E3 Ubiquitin Ligase, reguliert und fördert die Entwicklung von Nervenzellfortsätzen durch die Ubiquitinierung von Rap2. Um die Bedeutung von Nedd4-abhänginger Ubiquitinierung im entwickelten Gehirn zu untersuchen, wurden Mausmodelle generiert und analysiert, in denen Nedd4-1 und dessen nächstes Homolog Nedd4-2, speziell in Nervenzellen ausgeschaltet wurde. Ich habe herausgefunden, dass Nedd4-1 und Nedd4-2 wichtige regulatorische Proteine für die neuronale Morphogenese und die synaptische Plastizität, insbesondere die Aufrechterhaltung von LTP, darstellen. Desweiteren habe ich festgestellt, dass Synaptopodin (SYNPO), ein Prolin-reiches, Aktin-assoziiertes Protein, von Nedd4-1 und Nedd4-2 in vitro ubiquitiniert wird. Dieses Ergebnis deutet daraufhin, dass SYNPO in dem Mechanismus eine Rolle spielt, durch den Nedd4-1 und Nedd4-2 LTP aufrechterhalten. Diese Studie wirft ein neues Licht auf die funktionelle Rolle von Nedd4-abhänginger Ubiquitinierung bei höheren Funktionen des Gehirns von Säugetieren sowie der neuronalen Entwicklung.
|
4 |
STRUCTURAL AND FUNCTIONAL STUDIES OF F-BOX-ONLY PROTEIN FBXO7 AND ITS INTERACTIONS WITH PROTEASOME INHIBITOR PI31Shang, Jinsai 01 August 2015 (has links)
F-box only protein 7 (Fbxo7), a member of the F-box-only subfamily of FBPs, is a biologically and pathophysiologically important human protein that assumes many critical functions. The different functions of Fbxo7 depend on the formation of various multi-protein complexes. Possible interplay between different Fbxo7 functions further complicate the protein-protein interaction networks involved in Fbxo7 biology. Although significant progresses have been made to understand the functions, regulation, specificity, and protein interaction network of Fbxo7, a myriad of questions remain to be answered. The objectives of the work presented in this dissertation are to elucidate the molecular structures underlying the functions of Fbxo7 and the interaction with its protein partners, such as proteasome inhibitor PI31. The best known biological function of Fbxo7 is its role as the substrate-recognition subunit of the SCFFbxo7 (Skp1-Cul1-F-box protein) E3 ubiquitin ligase that catalyzes the ubiquitination of hepatoma up-regulated protein (HURP) and inhibitor of apoptosis protein (IAP). Fbxo7 also assumes various SCF-independent functions through interact with its protein partners that are not the substrates of the ubiquitin proteasome system, such as PI31, Cdk6, p27, PINK1 (PTEN-induced kinase 1), and Parkin. PI31 is a known proteasome regulator which was initially characterized as a proteasome inhibitor in vitro. The binding affinity between Fbxo7 and PI31 is very strong, and The Fbxo7-PI31 interaction is mediated by heterodimerization of the FP domains of the two proteins. This work is focus on study the protein structure of the two FP domains in Fbxo7 and PI3. Chapter 1 reviewed the F-box-only protein Fbxo7 biology including the function of Fbxo7 protein in ubiquitination proteasome pathway and some SCF-independent functions which are relate to human disease. Chapter 2 discussed the function of proteasome inhibitor PI31. With the many important biological functions, Fbxo7 is clearly an extraordinary important protein, but the lack of structural knowledge has hampered efforts to achieve a better understanding of Fbxo7 biology. In this work, we have determined the crystal structure of Fbxo7 FP domain (residues 181-335) and the crystal structure of the PI31 FP domain (residues 1-161) using a longer protein construct both at 2.0Å resolution. The Fbxo7 FP domain adopts an α/β-fold similar to that of the PI31 FP domain and the secondary structure elements of the two FP domains are comparable including the C-terminal helix, indicating that the two FP domains share the same overall global fold. However, an α helix and three β strands in the Fbxo7 are longer than their counterparts in the PI31 FP domain. The two FP domains also differ substantially in the length and conformation of the longest connecting loop. More importantly, structural differences between the two FP domains lead to drastically different modes of inter-domain protein–protein interaction: the PI31 FP domain utilizes either an α interface or β interface for homodimeric interaction, whereas the Fbxo7 FP domain utilizes an αβ interface. We have note that the inter-domain interaction of the Fbxo7 FP domain is much more extensive, featuring a larger contact surface area, better shape complementarity and more hydrophobic and hydrogen-bonding interactions. The results of this structural study provide critical insights into how Fbxo7 may dimerize (or multimerize) and interact with PI31 via the FP domain. Chapter 4 and Chapter 5 discussed the structure determinations, structure features and detail of protein-protein interactions of Fbxo7 and PI31 FP domains. Chapter 2 reviewed the corresponding fundamental biochemical techniques that been used in this study. Chapter 3 discussed protein structure determination by X-ray crystallography in structural biology studies. It was believed that the FP domains of Fbxo7 and PI31 mediate homodimerization and heterodimerization of the proteins and the FP domain is not present in other human proteins. In order to study the Fbxo7-PI31 heterodimerization protein-protein interactions, we performed modeling studies. Chapter 6 discussed the model building and binding studies. Based on the result of model building studies, we propose that an interaction between the two FP domains of Fbxo7 and PI31 should be mediated by a αβ interface using the α-helical surface of the Fbxo7 FP domain and the β-sheet surface of the PI31 FP domain. According to the result of pull down assay, the PI31 FP domain may complete with Skp1 for the binding with Fbxo7. It is possible that the formation of heterodimer between the Fbxo7 and PI31 mediate by FP domains may lead to the Fbxo7 dissociation from SCFFbxo7 complex which might reveal a new regulation mechanism.
|
5 |
The Role of the HECT-Type Ubiquitin Ligases WWP1 and WWP2 in Nerve Cell Development and Function / Die Rolle der HECT-Typ Ubiquitin Ligasen WWP1 und WWP2 bei der Entwicklung und der Funktion von NervenzellenKishimoto-Suga, Mika 15 April 2011 (has links)
No description available.
|
6 |
Mécanismes de régulation post-traductionnelle de la sénescence cellulaire et leurs impacts sur la suppression tumoraleFernandez Ruiz, Ana 07 1900 (has links)
La sénescence est un processus caractérisé par un arrêt stable du cycle cellulaire. Ce mécanisme peut être induit en réponse à de nombreux stress, comme l’activation d’un oncogène, le raccourcissement des télomères ou bien le traitement avec des composés génotoxiques. Cette réponse cellulaire est considérée comme une barrière antitumorale limitant la prolifération des cellules exposées au risque de transformation. La mise en place de la sénescence dépend de profonds changements au niveau moléculaire, dont l’activation d’un programme de dégradation sélective des protéines. Cette dégradation de protéines associée à la sénescence (SAPD) peut expliquer plusieurs caractéristiques des cellules sénescentes, notamment la présence de défauts dans la voie de synthèse des ribosomes (SARD). Ces derniers sont liés à un stress nucléolaire qui mène à l’accumulation de certaines protéines ribosomiques dans le noyau, où elles peuvent effectuer des fonctions indépendantes de leur rôle structurale dans les ribosomes. Parmi ces protéines ribosomiques, RPS14/uS11 peut s’accumuler dans le nucléoplasme et réguler le cycle cellulaire en inhibant CDK4. Ces mécanismes de régulation post-traductionnelle -le SAPD ainsi que les conséquences des SARD- contribuent de manière importante au phénotype sénescent. Nous avons émis l’hypothèse que la caractérisation des effecteurs dans ces voies pourrait mener à l’identification de nouvelles protéines importantes pour la sénescence et la suppression tumorale.
Dans un premier temps, nous avons évalué le rôle de la protéine ribosomique RPL22/eL22 dans le cycle cellulaire et la sénescence. Tout comme RPS14, RPL22 a été identifié dans l’analyse de l’interactome de CDK4 lors de la sénescence induite par la perte du facteur de la ribogenèse RSL1D1. Nous avons pensé que RPL22 pourrait agir de manière similaire à RPS14 et ainsi effectuer des fonctions extra-ribosomiques impliquées dans la régulation du cycle cellulaire. Dans le premier article présenté dans cette thèse, nous montrons que la surexpression de RPL22 dans des fibroblastes humains induit un phénotype sénescent et que RPL22 peut lier et inhiber CDK4 afin d’activer la voie de RB. Ensemble, ces données indiquent un rôle suppressif de RPL22 dans le cycle cellulaire.
En second lieu, nous nous sommes penchés sur la caractérisation des effecteurs du programme de dégradation sélective de protéines associé à la sénescence. Ce programme est mené à terme par le système ubiquitine-protéasome, un mécanisme finement régulé par différents types de protéines. Parmi celles-ci, les E3 ubiquitine ligases définissent la spécificité de ce système en interagissant avec les substrats à dégrader. Nous avons donc pensé que certaines E3 ubiquitine ligases spécifiques pourraient être importantes pour le mécanisme de dégradation protéique associé à la sénescence. Afin d’identifier celles-ci, nous avons effectué un criblage de shARN ciblant des gènes d’E3 ubiquitine ligases dans le contexte de la sénescence induite par les oncogènes. Ceci a mené à l’identification d’ASB14 comme un acteur important de la sénescence. Dans le deuxième article de cette thèse, nous montrons que la perte d’ASB14 produit un contournement de la sénescence induite par l’oncogène RAS dans plusieurs modèles cellulaires. ASB14 est une protéine peu caractérisée et nous avons généré des anticorps afin d’analyser son expression. Nous montrons ensuite qu’ASB14 s’exprime fortement dans le pancréas sain, tandis que ses niveaux diminuent dans les tumeurs pancréatiques. Enfin, nous avons identifié les partenaires d’interaction d’ASB14 dans le contexte de la sénescence induite par l’oncogène RAS.
Globalement, les travaux présentés dans cette thèse nous ont permis d’identifier deux nouvelles protéines impliquées dans la sénescence cellulaire : la protéine ribosomique RPL22 et l’E3 ubiquitine ligase ASB14. Ces deux protéines contribuent à la régulation post-traductionnelle du phénotype sénescent. D’un côté, RPL22 peut inhiber l’activité de CDK4 afin d’activer la voie de RB et ainsi réguler le cycle cellulaire. D’une autre part, ASB14 est importante pour le maintien du phénotype sénescent et semble avoir un rôle dans la suppression tumorale du pancréas. Nos résultats suggèrent que RPL22 et ASB14 sont importants pour la sénescence et la suppression tumorale. / Cellular senescence is characterized by a stable cell cycle arrest. This process can be induced by a variety of cellular stresses, including oncogene activation, telomere shortening and genotoxic treatments. In fact, senescence is considered an antitumor barrier that prevents cellular transformation. Senescence is associated with widespread molecular changes, including the activation of a selective protein degradation program. This senescence-associated protein degradation (SAPD) could regulate some senescence-associated phenotypes, including the senescence-associated ribosome biogenesis defects (SARD). Senescence-associated ribosome biogenesis defects are linked to a nuclear accumulation of some ribosomal proteins such as RPS14/uS11 capable of carrying out extra-ribosomal functions. In particular, RPS14 can inhibit CDK4 and mediate senescence. Thus, we hypothesize that the proteins implicated in these pathways -SAPD and SARD- could be important for senescence and tumor suppression.
First, we evaluated the ability of the ribosomal protein L22 (RPL22/eL22) to regulate cellular senescence and cell cycle progression. RPL22, as RPS14, was identified as a binding partner for CDK4 in senescent cells induced by depleting the ribosome biogenesis factor RSL1D1. Hence, we though that RPL22 could act in a manner similar to RPS14. In chapter two, we show that RPL22 overexpression induces a senescent phenotype in human fibroblasts. In addition, we show that RPL22 can interact with CDK4 inhibiting its activity and stimulating the RB tumor suppressor pathway. Taken together, these results indicate a suppressive role of RPL22 in cell cycle progression.
Next, we focused on the characterization of SAPD effectors. This mechanism is mediated by the ubiquitin-proteasome system which is tightly regulated by E3 ubiquitin ligases. Thus, we thought that specific E3 ubiquitin ligases could be important for SAPD and for senescence. In order to discover E3 ubiquitin ligases that contribute to senescence, we performed an unbiased screening using shRNA libraries in Ras-induced senescent cells. This led to the identification of ASB14 as an important mediator of senescence. In chapter three, we show that ASB14 depletion leads to a bypass of Ras-induced senescence. ASB14 is a poorly characterized E3 ligase, and we generated antibodies in order to analyze its expression levels. We show that ASB14 is highly expressed in the normal pancreas whereas its expression is reduced in pancreatic cancer tissues. Finally, we uncovered the interactome of ASB14 in Ras-induced senescent cells. Overall, we have discovered two new senescence mediators: ribosomal protein L22 and E3 ubiquitin ligase ASB14. These proteins are implicated in the post-translational regulation of the senescent phenotype. RPL22 acts as a CDK4 inhibitor to activate RB pathway and regulate cell cycle arrest and ASB14 is an important mediator of senescence maintenance. Taken together, our results suggest that RPL22 and ASB14 are important for cellular senescence and tumor suppression.
|
Page generated in 0.0685 seconds