• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fonctions de Lyapunov : une approche KAM faible

Pageault, Pierre 17 November 2011 (has links) (PDF)
Cette thèse est divisée en trois parties. Dans une première partie, on donne une description nouvelle des points récurrents par chaînes d'un système dynamique comme ensemble d'Aubry projeté d'une barrière ultramétrique. Cette approche permet de munir l'ensemble des composantes transitives par chaînes d'une structure d'espace ultramétrique expliquant leur topologie totalement discontinue, et de retrouver un théorème célèbre de Charles Conley concernant l'existence de fonctions de Lyapunov décroissant strictement le long des orbites non-récurrentes par chaînes. Dans une deuxième partie, on développe une théorie d'Aubry-Mather pour les homéomorphismes d'un espace métrique compact. On introduit dans ce cadre un ensemble d'Aubry métrique, puis topologique, ainsi qu'un ensemble de Mañé. Ces notions, plus fines que la récurrence par chaînes, permettent de mieux comprendre les fonctions de Lyapunov d'un tel système dynamique. Dans une dernière partie, on montre un résultat général de densité de certains contre-exemples au théorème de Sard pour lesquels l'ensemble des points critiques est un arc topologique et on donne des applications dynamiques de ce résultat. Celles-ci sont liées à des problèmes d'unicité, à constantes près, des solutions KAM faibles (ou solutions de viscosité) de certaines équations d'Hamilton-Jacobi.
2

Detection of Generalizable Clone Security Coding Bugs Using Graphs and Learning Algorithms

Mayo, Quentin R 12 1900 (has links)
This research methodology isolates coding properties and identifies the probability of security vulnerabilities using machine learning and historical data. Several approaches characterize the effectiveness of detecting security-related bugs that manifest as vulnerabilities, but none utilize vulnerability patch information. The main contribution of this research is a framework to analyze LLVM Intermediate Representation Code and merging core source code representations using source code properties. This research is beneficial because it allows source programs to be transformed into a graphical form and users can extract specific code properties related to vulnerable functions. The result is an improved approach to detect, identify, and track software system vulnerabilities based on a performance evaluation. The methodology uses historical function level vulnerability information, unique feature extraction techniques, a novel code property graph, and learning algorithms to minimize the amount of end user domain knowledge necessary to detect vulnerabilities in applications. The analysis shows approximately 99% precision and recall to detect known vulnerabilities in the National Institute of Standards and Technology (NIST) Software Assurance Metrics and Tool Evaluation (SAMATE) project. Furthermore, 72% percent of the historical vulnerabilities in the OpenSSL testing environment were detected using a linear support vector classifier (SVC) model.
3

Regularity at infinity and global fibrations of real algebraic maps / Regularidade no infinito e fibrações globais de aplicações algébricas reais

Dias, Luis Renato Gonçalves 28 February 2013 (has links)
Let f : \'K POT. \' be a \'C POT. 2\' semi-algebraic mapping for K = R and a polynomial mapping for K = C. It is well-known that f is a locally trivial topological fibration over the complement of the bifurcation set B(f), also called atypical set. In this work, we consider the notion of t-regularity and \'ho E\'-regularity to study the bifurcation set of semi-algebraic mappings f : \'R POT. n\' \'ARROW\' \'R POT. p\' and polynomial mappings f : \'C POT. n\' \'ARROW\' \'C POT. p\'. We show that t-regularity is equivalent to regularity conditions at infinity which have been used by Rabier (1997), Gaffney (1999), Kurdyka, Orro and Simon (2000) and Jelonek (2003) in order to control the asymptotic behaviour of mappings. In addition, we prove that t-regularity implies \'ho E\'-regularity. The \'ho E\'-regularity enables one to define the set of asymptotic non \'ho E\'-regular values S(f) \'This contained\' \' K POT. p\', and the set \'A IND. \'ho E\'\' := f(Singf) U S(f). For \'C POT. 2\' semi-algebraic mappings f : \'R POT. n\' ARROW \' \'R POT. p\' and polynomial mappings f : \'C POT. n\' \'ARROW\' \'C POT. p\', based on a partial Thom stratification at infinity, we rove that S(f) and \'A IND. ho E\' are closed real semi-algebraic sets of dimension at most p - 1 (real dimension at most 2p - 2, for f : \'C POT. n\' \'ARROW\' \'C POT. p\'). Moreover, based on a new fibration theorem at infinity, i.e. holding in the complement of a sufficiently large ball, we obtain B(f) \'this contained\' \'A IND. ho E\'. We study two special classes of polynomial mappings f : \'R POT. n\' \"ARROW\' \'R POT. p\', the class of fair polynomial mappings and the class of Newton non-degenerate polynomial mappings. For fair polynomial mappings, we give an interpretation of t-regularity in terms of integral closure of modules, which is a real counterpart of Gaffney\'s result (1999). For non-degenerate polynomial mappings, we obtain an approximation for B(f) through a set which depends on the Newton polyhedron of f (results like this have been obtained by Némethi and Zaharia (1990) for polynomial functions f : \'C POT. n\' \'ARROW\' C and recently for mixed polynomial functions by Chen and Tibar (2012)). To finish, we discuss some simple consequences of our work: the equivalence t regularity Rabier (equivalently Gaffney, Kuo-KOS, Jelonek) condition for mappings f : X \'ARROW\' \'K POT. p\', where X \'this contained\' \'K POT. n\' is a smooth ane variety; the problem of bijectivity of semi-algebraic mappings; and a formula to compute the Euler characteristic of regular fibres of polynomial mappings f : \'R POT. n\' \'AROOW\' \'R POT. n-1\'. The above results are also extensions of some results obtained, for polynomial functions f : \'K POT. n\' \'ARROW K, by Némethi and Zaharia (1990), Siersma and Tibar (1995), Paunescu and Zaharia (1997), Parusinski (1995) and Tibar (1998). Title: Regularity at infinity and global fibrations of real algebraic maps / Considere f : \'K POT. n\' \"SETA\' \'K POT. p\' uma aplicação semi-algébrica de classe \'C POT. 2\' para K = R e uma aplicação polinomial para K = C. Por resultados clássicos, sabe-se que f é uma fibração topologicamente trivial sobre o complementar dos valores de bifurcação B(f), também chamado de valores atípicos. Neste trabalho, consideramos a t-regularidade e a \'ho E\'-regularidade no estudo dos valores de bifurcação de aplicações semi-algébricas f : \'R POT. n\' \'SETA\' \'R POT. p\' de classe \'C POT. 2\' e aplicações polinomiais f : \'C POT. n\' \'SETA\' \'C POT. p\'. Mostramos que t-regularidade é equivalente às condições de regularidade no infinito usadas por Rabier (1997), Gaffney (1999), Kurdyka, Orro e Simon (2000) e Jelonek (2003) no controle do comportamento assintótico de aplicações. Também mostramos que t-regularidade implica \'ho E\'-regularidade. Através da \'ho E\'-regularidade, definimos o conjunto dos valores assintóticos não \'ho E\'- regulares S(f) \'K POT. p\', e o conjunto \'A IND. ho E\' : = f(Singf) U S(f). Para aplicações semialgébricas f : \'R POT. n\' \'SETA\' \'R POT. p\' de classe \'C POT. 2\' e aplicações polinomiais f : \'C POT. \' \'SETA\' \'C POT. p\', baseados na existência de uma estraticação parcial de Thom no infinito, provamos que S(f) e \'A IND. ho E\' são conjuntos semi-algébricos reais de dimensão no máximo p - 1 (dimensão real no máximo 2p 2, para f : \'C POT. \' \'SETA\' \' C POT. p\'). Além disso, baseados em um novo teorema de fibração no infinito, ou seja na existência de fibração no complementar de uma bola de raio suficientemente grande, obtemos que o conjunto de bifurcação B(f) está contido no conjunto \'A IND. ho E\'. Estudamos também duas classes de aplicações polinomiais f : \'R POT. n\' \'SETA\' \'R POT. p\', a classe de aplicações polinomiais fair e a classe de aplicações Newton não degeneradas. Para aplicações polinomiais fair, obtemos uma interpretação da t-regularidade em termos da teoria de fecho integral de módulos, estendendo para o caso real os resultados de Gaffney (1999). Para aplicações não degeneradas, obtemos uma aproximação de B(f) através de um conjunto que depende do poliedro de Newton de f (resultados deste tipo foram obtidos por Némethi e Zaharia (1990) para funções polinomiais f : \'C POT. \' \'SETA\' C e recentemente para funções polinomiais mistas por Chen e Tibar (2012)). No final, discutimos algumas consequências simples do nosso trabalho: a equivalência t-regularidade condição de Rabier (equivalentemente Gaffney, Kuo-KOS, Jelonek) para aplicações f : X \'SETA\' \'K POT. p\', onde X \'está contido\' \'K POT. n\' é uma variedade suave afim; o problema de bijetividade de aplicações semi-algébricas; e uma fórmula para o cálculo da característica de Euler de fibras regulares de aplicações polinomiais f : \'R POT. n\' \'SETA\' \'R POT. n-1\'. Os resultados acima também são extensões de alguns resultados obtidos para funções polinomiais f : \'K POT. n\' \'SETA\' K, por Némethi e Zaharia (1990), Siersma e Tibar (1995), Paunescu e Zaharia (1997), Parusinski (1995) e Tibar (1998). Título: Regularidade no infinito e fibrações globais de aplicações algébricas reais
4

Regularity at infinity and global fibrations of real algebraic maps / Regularidade no infinito e fibrações globais de aplicações algébricas reais

Luis Renato Gonçalves Dias 28 February 2013 (has links)
Let f : \'K POT. \' be a \'C POT. 2\' semi-algebraic mapping for K = R and a polynomial mapping for K = C. It is well-known that f is a locally trivial topological fibration over the complement of the bifurcation set B(f), also called atypical set. In this work, we consider the notion of t-regularity and \'ho E\'-regularity to study the bifurcation set of semi-algebraic mappings f : \'R POT. n\' \'ARROW\' \'R POT. p\' and polynomial mappings f : \'C POT. n\' \'ARROW\' \'C POT. p\'. We show that t-regularity is equivalent to regularity conditions at infinity which have been used by Rabier (1997), Gaffney (1999), Kurdyka, Orro and Simon (2000) and Jelonek (2003) in order to control the asymptotic behaviour of mappings. In addition, we prove that t-regularity implies \'ho E\'-regularity. The \'ho E\'-regularity enables one to define the set of asymptotic non \'ho E\'-regular values S(f) \'This contained\' \' K POT. p\', and the set \'A IND. \'ho E\'\' := f(Singf) U S(f). For \'C POT. 2\' semi-algebraic mappings f : \'R POT. n\' ARROW \' \'R POT. p\' and polynomial mappings f : \'C POT. n\' \'ARROW\' \'C POT. p\', based on a partial Thom stratification at infinity, we rove that S(f) and \'A IND. ho E\' are closed real semi-algebraic sets of dimension at most p - 1 (real dimension at most 2p - 2, for f : \'C POT. n\' \'ARROW\' \'C POT. p\'). Moreover, based on a new fibration theorem at infinity, i.e. holding in the complement of a sufficiently large ball, we obtain B(f) \'this contained\' \'A IND. ho E\'. We study two special classes of polynomial mappings f : \'R POT. n\' \"ARROW\' \'R POT. p\', the class of fair polynomial mappings and the class of Newton non-degenerate polynomial mappings. For fair polynomial mappings, we give an interpretation of t-regularity in terms of integral closure of modules, which is a real counterpart of Gaffney\'s result (1999). For non-degenerate polynomial mappings, we obtain an approximation for B(f) through a set which depends on the Newton polyhedron of f (results like this have been obtained by Némethi and Zaharia (1990) for polynomial functions f : \'C POT. n\' \'ARROW\' C and recently for mixed polynomial functions by Chen and Tibar (2012)). To finish, we discuss some simple consequences of our work: the equivalence t regularity Rabier (equivalently Gaffney, Kuo-KOS, Jelonek) condition for mappings f : X \'ARROW\' \'K POT. p\', where X \'this contained\' \'K POT. n\' is a smooth ane variety; the problem of bijectivity of semi-algebraic mappings; and a formula to compute the Euler characteristic of regular fibres of polynomial mappings f : \'R POT. n\' \'AROOW\' \'R POT. n-1\'. The above results are also extensions of some results obtained, for polynomial functions f : \'K POT. n\' \'ARROW K, by Némethi and Zaharia (1990), Siersma and Tibar (1995), Paunescu and Zaharia (1997), Parusinski (1995) and Tibar (1998). Title: Regularity at infinity and global fibrations of real algebraic maps / Considere f : \'K POT. n\' \"SETA\' \'K POT. p\' uma aplicação semi-algébrica de classe \'C POT. 2\' para K = R e uma aplicação polinomial para K = C. Por resultados clássicos, sabe-se que f é uma fibração topologicamente trivial sobre o complementar dos valores de bifurcação B(f), também chamado de valores atípicos. Neste trabalho, consideramos a t-regularidade e a \'ho E\'-regularidade no estudo dos valores de bifurcação de aplicações semi-algébricas f : \'R POT. n\' \'SETA\' \'R POT. p\' de classe \'C POT. 2\' e aplicações polinomiais f : \'C POT. n\' \'SETA\' \'C POT. p\'. Mostramos que t-regularidade é equivalente às condições de regularidade no infinito usadas por Rabier (1997), Gaffney (1999), Kurdyka, Orro e Simon (2000) e Jelonek (2003) no controle do comportamento assintótico de aplicações. Também mostramos que t-regularidade implica \'ho E\'-regularidade. Através da \'ho E\'-regularidade, definimos o conjunto dos valores assintóticos não \'ho E\'- regulares S(f) \'K POT. p\', e o conjunto \'A IND. ho E\' : = f(Singf) U S(f). Para aplicações semialgébricas f : \'R POT. n\' \'SETA\' \'R POT. p\' de classe \'C POT. 2\' e aplicações polinomiais f : \'C POT. \' \'SETA\' \'C POT. p\', baseados na existência de uma estraticação parcial de Thom no infinito, provamos que S(f) e \'A IND. ho E\' são conjuntos semi-algébricos reais de dimensão no máximo p - 1 (dimensão real no máximo 2p 2, para f : \'C POT. \' \'SETA\' \' C POT. p\'). Além disso, baseados em um novo teorema de fibração no infinito, ou seja na existência de fibração no complementar de uma bola de raio suficientemente grande, obtemos que o conjunto de bifurcação B(f) está contido no conjunto \'A IND. ho E\'. Estudamos também duas classes de aplicações polinomiais f : \'R POT. n\' \'SETA\' \'R POT. p\', a classe de aplicações polinomiais fair e a classe de aplicações Newton não degeneradas. Para aplicações polinomiais fair, obtemos uma interpretação da t-regularidade em termos da teoria de fecho integral de módulos, estendendo para o caso real os resultados de Gaffney (1999). Para aplicações não degeneradas, obtemos uma aproximação de B(f) através de um conjunto que depende do poliedro de Newton de f (resultados deste tipo foram obtidos por Némethi e Zaharia (1990) para funções polinomiais f : \'C POT. \' \'SETA\' C e recentemente para funções polinomiais mistas por Chen e Tibar (2012)). No final, discutimos algumas consequências simples do nosso trabalho: a equivalência t-regularidade condição de Rabier (equivalentemente Gaffney, Kuo-KOS, Jelonek) para aplicações f : X \'SETA\' \'K POT. p\', onde X \'está contido\' \'K POT. n\' é uma variedade suave afim; o problema de bijetividade de aplicações semi-algébricas; e uma fórmula para o cálculo da característica de Euler de fibras regulares de aplicações polinomiais f : \'R POT. n\' \'SETA\' \'R POT. n-1\'. Os resultados acima também são extensões de alguns resultados obtidos para funções polinomiais f : \'K POT. n\' \'SETA\' K, por Némethi e Zaharia (1990), Siersma e Tibar (1995), Paunescu e Zaharia (1997), Parusinski (1995) e Tibar (1998). Título: Regularidade no infinito e fibrações globais de aplicações algébricas reais
5

Fonctions de Lyapunov : une approche KAM faible / Lyapunov functions : a weak KAM approach

Pageault, Pierre 17 November 2011 (has links)
Cette thèse est divisée en trois parties. Dans une première partie, on donne une description nouvelle des points récurrents par chaînes d'un système dynamique comme ensemble d'Aubry projeté d'une barrière ultramétrique. Cette approche permet de munir l'ensemble des composantes transitives par chaînes d'une structure d'espace ultramétrique expliquant leur topologie totalement discontinue, et de retrouver un théorème célèbre de Charles Conley concernant l'existence de fonctions de Lyapunov décroissant strictement le long des orbites non-récurrentes par chaînes. Dans une deuxième partie, on développe une théorie d'Aubry-Mather pour les homéomorphismes d'un espace métrique compact. On introduit dans ce cadre un ensemble d'Aubry métrique, puis topologique, ainsi qu'un ensemble de Mañé. Ces notions, plus fines que la récurrence par chaînes, permettent de mieux comprendre les fonctions de Lyapunov d'un tel système dynamique. Dans une dernière partie, on montre un résultat général de densité de certains contre-exemples au théorème de Sard pour lesquels l'ensemble des points critiques est un arc topologique et on donne des applications dynamiques de ce résultat. Celles-ci sont liées à des problèmes d'unicité, à constantes près, des solutions KAM faibles (ou solutions de viscosité) de certaines équations d'Hamilton-Jacobi. / This thesis is divided into three parts. In the first part, we give a new description of chain-recurrence using an ultrametric barrier. This barrier allows to endow the space of chain-transitive components with an ultrametric structure, explaining its topology and leading to the famous result of Charles Conley about Lyapunov function decreasing along non chain-recurrent orbits. Most of the results, first given in the setting of a continuous map on a compact metric space are then generalised to multivalued map on arbitrary separable metric spaces. In the second part, we develop an Aubry-Mather theory for a homeomorphism on a compact metric space. In this setting, we introduce metric and topological Aubry set and Mañé set, allowing a better understanding of Lyapunov functions arising in such a dynamical system. In the last part, we prove a general density result for some counterexamples of Sard's theorem for which the set of critical points is a topological arc and we give applications to dynamics.
6

Résultats de généricité pour des réseaux / Generic results for networks

Percie du Sert, Maxime 03 July 2014 (has links)
Un réseau de cellules est un graphe orienté dont chaque sommet (aussi appelé cellule) représente un ensemble de variables et dont les arcs symbolisent les interactions entre ces variables. Les réseaux de cellules jouent un rôle important dans la modélisation de phénomènes neurologiques, de systèmes économiques ou biologiques, etc.. Soit G un graphe orienté possédant N sommets, on dit qu'une application f=(f_1,...,f_N) de X=X_1×...×X_N dans X (où X_j=R^dj) est admissible, si pour tout sommet j, f_j(x) dépend de x_i seulement si i->j est un arc de G. Dans cette thèse nous montrons que si G est fortement connecté et auto-dépendant, génériquement par rapport à f appartenant à l'ensemble des applications admissibles de classe C¹, le système dynamique engendré par l'équation différentielle x'(t)=f(x(t)) vérifie la propriété de Kupka-Smale, c'est-à-dire tous les éléments critiques (points d'équilibre et orbites périodiques) sont hyperboliques et les variétés stable et instable des éléments critiques s'intersectent transversalement. Ainsi, pour un ensemble dense d'applications admissibles, le système dynamique est au moins localement stable par perturbation (admissible ou non). Nous considérons également l'ensemble des applications « dissipatives » f de classe C¹ dont la différentielle Df(x) est une matrice de Jacobi cyclique positive en tout point x. De telles applications définissent un système coopératif. Nous montrons que le système dynamique engendré par l'équation x'(t)=f(x(t)) vérifie génériquement la propriété de Morse-Smale par rapport à de telles applications f, c'est-à-dire le système vérifie la propriété de Kupka-Smale, les éléments critiques sont en nombre fini et l'ensemble des points non-errants est égal à l'ensemble des éléments critiques. Cette propriété entraîne la stabilité structurelle du système dynamique. Finalement, dans cette thèse nous étudions aussi des réseaux de cellules satisfaisant des contraintes de symétrie locale. Pour de tels systèmes, nous montrons tout d'abord des résultats génériques d'observation à symétrie près, de synchronisation et de décalage de phase. Nous utilisons ces résultats pour montrer la généricité de l'hyperbolicité des points d'équilibre ainsi qu'un lemme d'injectivité pour les trajectoires. Les résultats de généricité de cette thèse sont obtenus à l'aide de théorèmes de transversalité de type Sard-Smale. / A coupled cell network consists in a directed graph, with each node (also called cell) representing a set of variables and with each arrow representing the interaction between these variables. Coupled cell networks play an important role in the modeling of phenomena in neurology, economics or biology, etc.. Let G be a directed graph with N nodes. A mapping f=(f_1,...,f_N) of X=X_1×...×X_N to X (where X_j=R^dj) is admissible, if for each node j, f_j(x) depends on x_i only if i->j is an arrow of G. In this thesis, we show that if the graph G is strongly connected and self-dependant, generically with respect to f in the class of admissible C¹-functions, the dynamical system generated by the differential equation x'(t)=f(x(t)) satisfies the Kupka-Smale property, that is all the critical elements (i.e. the equilibria and periodic orbits) are hyperbolic and the stable and unstable manifolds of these critical elements intersect transversally. As a consequence, for a dense set of admissible functions, the dynamical system is locally stable with respect of small perturbations (admissible or not). We also consider the set of "dissipative" mappings f of class C¹, the differential Df (x) of which is a positive cyclic Jacobi matrix at any point x. Such maps define a cooperative system. We show that the dynamical system generated by the equation x'(t)=f(x(t)) is generically Morse-Smale with respect to such mappings f, that is the system is Kupka-Smale, the critical elements are in finite number and the non-wandering set is equal to the set of critical elements. This property implies the structural stability of the dynamical system. Finally, in this thesis we also study coupled cell networks satisfying local symmetry constraints. For such systems, we first show generic results of observation, synchronization and phase shift. We use these properties to show the genericity of hyperbolicity of equilibrium points and an injectivity lemma for trajectories. In the proof of these genericity results, we use different Sard-Smale type theorems.
7

Mécanismes de régulation post-traductionnelle de la sénescence cellulaire et leurs impacts sur la suppression tumorale

Fernandez Ruiz, Ana 07 1900 (has links)
La sénescence est un processus caractérisé par un arrêt stable du cycle cellulaire. Ce mécanisme peut être induit en réponse à de nombreux stress, comme l’activation d’un oncogène, le raccourcissement des télomères ou bien le traitement avec des composés génotoxiques. Cette réponse cellulaire est considérée comme une barrière antitumorale limitant la prolifération des cellules exposées au risque de transformation. La mise en place de la sénescence dépend de profonds changements au niveau moléculaire, dont l’activation d’un programme de dégradation sélective des protéines. Cette dégradation de protéines associée à la sénescence (SAPD) peut expliquer plusieurs caractéristiques des cellules sénescentes, notamment la présence de défauts dans la voie de synthèse des ribosomes (SARD). Ces derniers sont liés à un stress nucléolaire qui mène à l’accumulation de certaines protéines ribosomiques dans le noyau, où elles peuvent effectuer des fonctions indépendantes de leur rôle structurale dans les ribosomes. Parmi ces protéines ribosomiques, RPS14/uS11 peut s’accumuler dans le nucléoplasme et réguler le cycle cellulaire en inhibant CDK4. Ces mécanismes de régulation post-traductionnelle -le SAPD ainsi que les conséquences des SARD- contribuent de manière importante au phénotype sénescent. Nous avons émis l’hypothèse que la caractérisation des effecteurs dans ces voies pourrait mener à l’identification de nouvelles protéines importantes pour la sénescence et la suppression tumorale. Dans un premier temps, nous avons évalué le rôle de la protéine ribosomique RPL22/eL22 dans le cycle cellulaire et la sénescence. Tout comme RPS14, RPL22 a été identifié dans l’analyse de l’interactome de CDK4 lors de la sénescence induite par la perte du facteur de la ribogenèse RSL1D1. Nous avons pensé que RPL22 pourrait agir de manière similaire à RPS14 et ainsi effectuer des fonctions extra-ribosomiques impliquées dans la régulation du cycle cellulaire. Dans le premier article présenté dans cette thèse, nous montrons que la surexpression de RPL22 dans des fibroblastes humains induit un phénotype sénescent et que RPL22 peut lier et inhiber CDK4 afin d’activer la voie de RB. Ensemble, ces données indiquent un rôle suppressif de RPL22 dans le cycle cellulaire. En second lieu, nous nous sommes penchés sur la caractérisation des effecteurs du programme de dégradation sélective de protéines associé à la sénescence. Ce programme est mené à terme par le système ubiquitine-protéasome, un mécanisme finement régulé par différents types de protéines. Parmi celles-ci, les E3 ubiquitine ligases définissent la spécificité de ce système en interagissant avec les substrats à dégrader. Nous avons donc pensé que certaines E3 ubiquitine ligases spécifiques pourraient être importantes pour le mécanisme de dégradation protéique associé à la sénescence. Afin d’identifier celles-ci, nous avons effectué un criblage de shARN ciblant des gènes d’E3 ubiquitine ligases dans le contexte de la sénescence induite par les oncogènes. Ceci a mené à l’identification d’ASB14 comme un acteur important de la sénescence. Dans le deuxième article de cette thèse, nous montrons que la perte d’ASB14 produit un contournement de la sénescence induite par l’oncogène RAS dans plusieurs modèles cellulaires. ASB14 est une protéine peu caractérisée et nous avons généré des anticorps afin d’analyser son expression. Nous montrons ensuite qu’ASB14 s’exprime fortement dans le pancréas sain, tandis que ses niveaux diminuent dans les tumeurs pancréatiques. Enfin, nous avons identifié les partenaires d’interaction d’ASB14 dans le contexte de la sénescence induite par l’oncogène RAS. Globalement, les travaux présentés dans cette thèse nous ont permis d’identifier deux nouvelles protéines impliquées dans la sénescence cellulaire : la protéine ribosomique RPL22 et l’E3 ubiquitine ligase ASB14. Ces deux protéines contribuent à la régulation post-traductionnelle du phénotype sénescent. D’un côté, RPL22 peut inhiber l’activité de CDK4 afin d’activer la voie de RB et ainsi réguler le cycle cellulaire. D’une autre part, ASB14 est importante pour le maintien du phénotype sénescent et semble avoir un rôle dans la suppression tumorale du pancréas. Nos résultats suggèrent que RPL22 et ASB14 sont importants pour la sénescence et la suppression tumorale. / Cellular senescence is characterized by a stable cell cycle arrest. This process can be induced by a variety of cellular stresses, including oncogene activation, telomere shortening and genotoxic treatments. In fact, senescence is considered an antitumor barrier that prevents cellular transformation. Senescence is associated with widespread molecular changes, including the activation of a selective protein degradation program. This senescence-associated protein degradation (SAPD) could regulate some senescence-associated phenotypes, including the senescence-associated ribosome biogenesis defects (SARD). Senescence-associated ribosome biogenesis defects are linked to a nuclear accumulation of some ribosomal proteins such as RPS14/uS11 capable of carrying out extra-ribosomal functions. In particular, RPS14 can inhibit CDK4 and mediate senescence. Thus, we hypothesize that the proteins implicated in these pathways -SAPD and SARD- could be important for senescence and tumor suppression. First, we evaluated the ability of the ribosomal protein L22 (RPL22/eL22) to regulate cellular senescence and cell cycle progression. RPL22, as RPS14, was identified as a binding partner for CDK4 in senescent cells induced by depleting the ribosome biogenesis factor RSL1D1. Hence, we though that RPL22 could act in a manner similar to RPS14. In chapter two, we show that RPL22 overexpression induces a senescent phenotype in human fibroblasts. In addition, we show that RPL22 can interact with CDK4 inhibiting its activity and stimulating the RB tumor suppressor pathway. Taken together, these results indicate a suppressive role of RPL22 in cell cycle progression. Next, we focused on the characterization of SAPD effectors. This mechanism is mediated by the ubiquitin-proteasome system which is tightly regulated by E3 ubiquitin ligases. Thus, we thought that specific E3 ubiquitin ligases could be important for SAPD and for senescence. In order to discover E3 ubiquitin ligases that contribute to senescence, we performed an unbiased screening using shRNA libraries in Ras-induced senescent cells. This led to the identification of ASB14 as an important mediator of senescence. In chapter three, we show that ASB14 depletion leads to a bypass of Ras-induced senescence. ASB14 is a poorly characterized E3 ligase, and we generated antibodies in order to analyze its expression levels. We show that ASB14 is highly expressed in the normal pancreas whereas its expression is reduced in pancreatic cancer tissues. Finally, we uncovered the interactome of ASB14 in Ras-induced senescent cells. Overall, we have discovered two new senescence mediators: ribosomal protein L22 and E3 ubiquitin ligase ASB14. These proteins are implicated in the post-translational regulation of the senescent phenotype. RPL22 acts as a CDK4 inhibitor to activate RB pathway and regulate cell cycle arrest and ASB14 is an important mediator of senescence maintenance. Taken together, our results suggest that RPL22 and ASB14 are important for cellular senescence and tumor suppression.

Page generated in 0.0364 seconds