• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 719
  • 78
  • 21
  • 17
  • 16
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1201
  • 372
  • 236
  • 225
  • 216
  • 189
  • 182
  • 148
  • 145
  • 121
  • 121
  • 119
  • 82
  • 80
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
591

Cyclic testing and assessment of shape memory alloy recentering systems

Speicher, Matthew S. 15 December 2009 (has links)
In an effort to mitigate damage caused by earthquakes to the built environment, civil engineers have been commissioned to research, design, and build increasingly robust and resilient structural systems. Innovative means to accomplish this task have emerged, such as integrating Shape Memory Alloys (SMAs) into structural systems. SMAs are a unique class of materials that have the ability to spontaneously recover strain of up to 8%. With proper placement in a structural system, SMAs can act as superelastic "structural fuses", absorbing large deformations, dissipating energy, and recentering the structure after a loading event. Though few applications have made it into practice, the potential for widespread use has never been better due to improvements in material behavior and reductions in cost. In this research, three different SMA-based structural applications are developed and tested. The first is a tension/compression damper that utilizes nickel-titanium (NiTi) Belleville washers. The second is a partially restrained beam-column connection utilizing NiTi bars. The third is an articulated quadrilateral bracing system utilizing NiTi wire bundles in parallel with c-shape dampers. Each system was uniquely designed to allow a structure to undergo large drift demands and dissipate energy while retaining strength and recentering ability. This exploratory work highlights the potential for SMA-based structural applications to enhance seismic structural performance and community resilience.
592

Seismic vulnerability assessment of wharf structures

Shafieezadeh, Abdollah 08 July 2011 (has links)
Serving as critical gateways for international trade, seaports are pivotal elements in transportation networks. Any disruption in the activities of port infrastructures may lead to significant losses from secondary economic effects, and can hamper the response and recovery efforts following a natural disaster. Particularly poignant examples which revealed the significance of port operations were the 1995 Kobe earthquake and 2010 Haiti earthquake in which liquefaction and lateral spreading of embankments imposed severe damage to both structural and non-structural components of ports. Since container wharf structures are responsible for loading and unloading of cargo, it is essential to understand the performance of these structures during earthquakes. Although previous studies have provided insight into some aspects of the seismic response of wharves, limitations in the modeling of wharf structures and the surrounding soil media have constrained the understanding of various features of the wharf response. This research provides new insights into the seismic behavior of wharves by using new and advanced structure and soil modeling procedures to carry out two and three-dimensional seismic analyses of a pile-supported marginal wharf structure in liquefiable soils. Furthermore, this research investigates the interaction between cranes and wharves and closely assesses the role of wharf-crane interaction on the response of each of these systems. For this purpose, the specific effect of wharf-crane interaction is studied by incorporating advanced models of the crane with sliding/uplift base conditions. To reduce the computational time required for three-dimensional nonlinear dynamic analysis of the wharf in order to be applicable for probabilistic seismic demand analysis, a simplified wharf model and an analysis technique are introduced and verified. In the next step probabilistic seismic demand models (PSDMs) are generated by imposing the wharf models to a suit of ground deformations of the soil embankment and pore water pressure generated for this study through free-field analysis. Convolving PSDMs and the limit states, a set of fragility curves are developed for critical wharf components whose damage induces a disruption in the normal operation of ports. The developed fragility curves provide decision makers with essential tools for maximizing investment in wharf retrofit and fill a major gap in seismic risk assessment of seaports which can be used to assess the regional impact of the damage to wharves during a natural hazard event.
593

Risk assessment of building inventories exposed to large scale natural hazards

Vitoontus, Soravit 30 March 2012 (has links)
Earthquakes are among the most devastating and unpredictable of natural hazards that affect civil infrastructure and have the potential for causing numerous casualties and significant economic losses over large areas. Every region that has the potential for great earthquakes should have an integrated plan for a seismic design and risk mitigation for civil infrastructure. This plan should include methods for estimating the vulnerability of building inventories and for forecasting economic losses resulting from future events. This study describes a methodology to assess risk to distributed civil infrastructure due to large-scale natural hazards with large geographical footprints, such as earthquakes, hurricanes and floods, and provides a detailed analysis and assessment of building losses due to earthquake. The distinguishing feature of this research, in contrast to previous loss estimation methods incorporated in systems such as HAZUS-MH, is that it considers the correlation in stochastic demand on building inventories due to the hazard, as well as correlation in building response and damage due to common materials, construction technologies, codes and code enforcement. These sources of correlation have been neglected, for the most part, in previous research. The present study has revealed that the neglect of these sources of correlation leads to an underestimation of the estimates of variance in loss and in the probable maximum loss (PML) used as a basis for underwriting risks. The methodology is illustrated with a seismic risk assessment of building inventories representing different occupancy classes in Shelby County, TN, considering both scenario earthquakes and earthquakes specified probabilistically. It is shown that losses to building inventories estimated under the common assumption that the individual losses can be treated as statistically independent may underestimate the PML by a factor of range from 1.7 to 3.0, depending on which structural and nonstructural elements are included in the assessment. A sensitivity analysis reveals the statistics and sources of correlation that are most significant for loss estimation, and points the way forward for supporting data acquisition and synthesis.
594

Experimental Investigation of Gouges and Cataclasites, Alpine Fault, New Zealand

Boulton, Carolyn Jeanne January 2013 (has links)
The upper 8-12 km of the Alpine Fault, South Island, New Zealand, accommodates relative Australia-Pacific plate boundary motion through coseismic slip accompanying large-magnitude earthquakes. Earthquakes occur due to frictional instabilities on faults, and their nucleation, propagation, and arrest is governed by tectonic forces and fault zone properties. A multi-disciplinary dataset is presented on the lithological, microstructural, mineralogical, geochemical, hydrological, and frictional properties of Alpine Fault rocks collected from natural fault exposures and from Deep Fault Drilling Project (DFDP-1) drillcore. Results quantify and describe the physical and chemical processes that affect seismicity and slip accommodation. Oblique dextral motion on the central Alpine Fault in the last 5-8 Myr has exhumed garnet-oligoclase facies mylonitic fault rocks from depths of up to 35 km. During the last phase of exhumation, brittle deformation of these mylonites, accompanied by fluid infiltration, has resulted in complex mineralogical and lithological variations in the fault rocks. Petrophysical, geochemical, and lithological data reveal that the fault comprises a central alteration zone of protocataclasites, foliated and nonfoliated cataclasites, and fault gouges bounded by a damage zone containing fractured ultramylonites and mylonites. Mineralogical results suggest that at least two stages of chemical alteration have occurred. At, or near, the brittle-to-ductile transition (c. >320 °C), metasomatic alteration reactions resulted in plagioclase and feldspar replacement by muscovite and sausserite, and biotite (phlogopite), hornblende (actinolite) and/or epidote replacement by chlorite (clinochlore). At lower temperatures (c. >120°C), primary minerals were altered to kaolinite, smectite and pyrite, or kaolinite, smectite, Fe-hydroxide (goethite) and carbonate, depending on redox conditions. Ultramylonites, nonfoliated and foliated cataclasites, and gouges in the hanging wall and footwall contain the high-temperature phyllosilicates chlorite and white mica (muscovite/illite). Brown principal slip zone (PSZ) gouges contain the low-temperature phyllosilicates kaolinite and smecite, and goethite and carbonate cements. The frictional and hydrological properties of saturated intact samples of central Alpine Fault surface-outcrop gouges and cataclasites were investigated in room temperature experiments conducted at 30-33 MPa effective normal stress (σn') using a double-direct shear configuration and controlled pore fluid pressure in a triaxial pressure vessel. Surface-outcrop samples from Gaunt Creek, location of DFDP-1, displayed, with increasing distance (up to 50 cm) from the contact with footwall fluvioglacial gravels: (1) an increase in fault normal permeability (k = 7.45 x 10⁻²⁰ m² to k = 1.15 x 10⁻¹⁶ m²), (2) a transition from frictionally weak (μ=0.44) fault gouge to frictionally strong (μ=0.50’0.55) cataclasite, (3) a change in friction rate dependence (a–b) from solely velocity strengthening to velocity strengthening and weakening, and (4) an increase in the rate of frictional healing. The frictional and hydrological properties of saturated intact samples of southern Alpine Fault surface-outcrop gouges were also investigated in room temperature double-direct shear experiments conducted at σn'= 6-31 MPa. Three complete cross-sections logged from outcrops of the southern Alpine Fault at Martyr River, McKenzie Creek, and Hokuri Creek show that dextral-normal slip is localized to a single 1-12 m-thick fault core comprising impermeable (k=10⁻²⁰ to 10⁻²² m²), frictionally weak (μ=0.12 – 0.37), velocity-strengthening, illite-chlorite and trioctahedral smectite (saponite)-chlorite-lizardite fault gouges. In low velocity room temperature experiments, Alpine Fault gouges tested have behaviours associated with aseismic creep. In a triaxial compression apparatus, the frictional properties of PSZ gouge samples recovered from DFDP-1 drillcore at 90 and 128 m depths were tested at temperatures up to T=350°C and effective normal stresses up to σn'=156 MPa to constrain the fault's strength and stability under conditions representative of the seismogenic crust. The chlorite/white mica-bearing DFDP-1A blue gouge is frictionally strong (μ=0.61–0.76) across a range of experimental conditions (T=70–350°C, σn'=31.2–156 MPa) and undergoes a stability transition from velocity strengthening to velocity weakening as T increases past 210°C, σn'=31.2–156 MPa. The coefficient of friction of smecite-bearing DFDP-1B brown gouge increases from μ=0.49 to μ=0.74 with increasing temperature and pressure (T=70–210°C, σn'=31.2–93.6 MPa) and it undergoes a transition from velocity strengthening to velocity weakening as T increases past 140°C, σn'=62.4 MPa. In low velocity hydrothermal experiments, Alpine Fault gouges have behaviours associated with potentially unstable, seismic slip at temperatures ≥140°C, depending on mineralogy. High-velocity (v=1 m/s), low normal stress (σn=1 MPa) friction experiments conducted on a rotary shear apparatus showed that the peak coefficient of friction (μp) of Alpine Fault cataclasites and fault gouges was consistently high (mean μp=0.69±0.06) in room-dry experiments. Variations in fault rock mineralogy and permeability were more apparent in experiments conducted with pore fluid, wherein the peak coefficient of friction of the cataclasites (mean μp=0.64±0.04) was higher than the fault gouges (mean μp=0.24±0.16). All fault rocks exhibited very low steady state coefficients of friction (μss) (room-dry mean μss=0.18±0.04; saturated mean μss=0.10±0.04). Three high-velocity experiments conducted on saturated smectite-bearing principal slip zone (PSZ) fault gouges had the lowest peak friction coefficients (μp=0.13-0.18), lowest steady state friction coefficients (μss=0.02-0.10), and lowest breakdown work values (WB=0.07-0.11 MJ/m²) of all the experiments performed. Lower strength (μ < c. 0.62) velocity-strengthening fault rocks comprising a realistically heterogeneous fault plane represent barrier(s) to rupture propagation. A wide range of gouges and cataclasites exhibited very low steady state friction coefficients in high-velocity friction experiments. However, earthquake rupture nucleation in frictionally strong (μ ≥ c. 0.62), velocity-weakening material provides the acceleration necessary to overcome the low-velocity rupture propagation barrier(s) posed by velocity-strengthening gouges and cataclasites. Mohr-Coulomb theory stipulates that sufficient shear stress must be resolved on the Alpine Fault, or pore fluid pressure must be sufficiently high, for earthquakes to nucleate in strong, unstable fault materials. A three-dimensional stress analysis was conducted using the average orientation of the central and southern Alpine Fault, the experimentally determined coefficient of friction of velocity-weakening DFDP-1A blue gouge, and the seismologically determined stress tensor and stress shape ratio(s). Results reveal that for a coefficient of friction of μ ≥ c. 0.62, the Alpine Fault is unfavourably oriented to severely misoriented for frictional slip.
595

Predicting earthquake ground shaking due to 1D soil layering and 3D basin structure in SW British Columbia, Canada

Molnar, Sheri 20 July 2011 (has links)
This thesis develops and explores two methodologies to assess earthquake ground shaking in southwestern British Columbia based on 1D soil layering and 3D basin structure. To assess site response based on soil layering, microtremor array measurements were conducted at two sites of contrasting geology to estimate Rayleigh-wave dispersion curves. A Bayesian inversion algorithm is developed to invert the dispersion data for the shear-wave velocity (VS) profile together with quantitative uncertainty estimates, accounting rigorously for data error covariance and model parameterization selection. The recovered VS profiles are assessed for reliability by comparison with invasive VS measurements at each site with excellent agreement. Probabilistic site response analysis is conducted based on a sample of VS profiles drawn from the posterior probability density of the microtremor inversion. The quantitative uncertainty analysis shows that the rapid and inexpensive microtremor array method provides sufficient resolution of soil layering for practical characterization of earthquake ground motion. To assess the effects of 3D Georgia basin structure on long-period (> 2 s) ground motion for large scenario earthquakes, numerical 3D finite difference modelling of viscoelastic wave propagation is applied. Both deep (> 40 km) subducting Juan de Fuca plate and crustal (5 km) North America plate earthquakes are simulated in locations congruent with known seismicity. Simulations are calibrated by comparing synthetic waveforms with 36 selected strong- and weak-motion seismograms of the 2001 MW 6.8 Nisqually earthquake. The ratio between predicted peak ground motions in models with and without Georgia basin sediments is applied as a quantitative measure of basin amplification. Steep edges in the upper 1 km of the northwest and southeast extents of the basin are coincident with the appearance of surface waves. Focussing of north-to-northeast propagating surface waves by shallow (< 1 km) basin structure increases ground motion in a localized region of southern Greater Vancouver. This effect occurs for both types of earthquakes located south-southwest of Vancouver at distances greater than ~80 km. The predicted shaking level is increased up to 17 times and the duration of moderate shaking (> 3.4 cm/s) is up to 16 times longer due to the 3D Georgia basin structure. / Graduate
596

Neotectonics And Seismicity Of The Ankara Region: A Case Study In The Urus Area

Kaplan, Tulin 01 July 2004 (has links) (PDF)
Study area, the UruS province, is located 70 km WNW of city of Ankara. Major settlements in the study area are two counties, UruS and G&uuml / d&uuml / l / and there are a number of villages, such as, from W to E, Macun, Yogunpelit, Kabaca, &Uuml / regil, &Ouml / zk&ouml / y, Tahtaci&ouml / rencik, Kirkkavak, Kavak&ouml / z&uuml / , Kayi and Karaca&ouml / ren. The study area is 189 km2 in size and included in 1/25000-scaled topographic quadrangles of H28a3, a4, d1 and d2. The G&uuml / d&uuml / l- UruS section of the &Ccedil / eltik&ccedil / i morphotectonic depression (&Ccedil / eltik&ccedil / i Basin) drained by the Antecedent Kirmir River and its second-order drainage system was first mapped in detail in the present study, and faults determining northern margin of the &Ccedil / eltik&ccedil / i depression were named as the UruS fault set comprising the SW part of the &Ccedil / eltik&ccedil / i Fault Zone / and the mechanism of the master fault of the UruS fault set was determined as left lateral oblique-slip fault with reverse component by the morphologic markers such as the deformed drainage system and pressure ridges. This was also supported by the fault plane solutions of the 2000.08.22 UruS earthquake. Three fault plane solutions, of which two of them for the 2000.08.22 UruS earthquake, and one of them for the 2003.02.27 &Ccedil / amlidere earthquake, were done to determine nature of the source. Ground material underlying the city of Ankara were divided into three categories: (a) well-lithified basement rocks, (b) Pliocene fluvio-lacustrine v sedimentary sequence, and (c) unconsolidated terrace and alluvial sediments of Quaternary age. Quaternary unconsolidated sediments are densely populated in Ankara. These sediments are fine-grained and have a maximum thickness of 200 m or more. Inside these sediments, static ground water level is very close (as on average: 6 m) to ground surface. These conditions are quite suitable for liquefaction of these unconsolidated alluvial sediments. In addition, basement rocks are full of zone of weakness. Even if, the city of Ankara is characterized by the shallow focus and small earthquakes (M&amp / #8804 / 5), it is open to the risk of large earthquakes to be sourced from the North Anatolian Fault System and the Seyfe Fault Zone located 110 km and 80 km, respectively, owing the ground material conditions beneath the city of Ankara. This point has to be taken out in constructions and site selection solution.
597

Seismically Induced Tilting Potential Of Shallow Mats On Fine Soils

Yilmaz, Mustafa Tolga 01 September 2004 (has links) (PDF)
Occurrence of displacements of shallow mat foundations resting on saturated silt-clay mixtures were reported in Mexico City during 1985 Mexico Earthquake, and in Adapazari during 1999 Kocaeli (izmit) Earthquake. Soft surface soils, shallow ground water, limited foundation embedments and deep alluvial deposits were the common features pertaining to such foundation displacements in either case. Experience shows, while uniform foundation settlements, even when excessive, do not limit post earthquake serviceability of building structures, tilting is particularly problematic. In this study, a simplified methodology is developed to estimate the seismically induced irrecoverable tilting potential of shallow mats on fine saturated soils. The undrained shear and deformation behavior of silt-clay mixtures encountered at the Adapazari sites with significant foundation displacements are investigated through a series of standard and rapid monotonic, and stress-controlled cyclic triaxial tests conducted over anisotropically consolidated natural soil samples. Test results show that, while the shear strength of these soils do not significantly degrade under means of loading comparable to that of Kocaeli earthquake, their plastic strain accumulation characteristics critically depend on the mode of loading as well as the relative levels of applied load with regard to the monotonic strength. Based on the results of laboratory tests, the response of nonlinear soil-foundation-structure system is reduced to a single-degree-of-freedom oscillator with elastic-perfectly plastic behavior. The natural period of the system is expressed by simplified soil-structure-interaction equations. Pseudo-static yield acceleration, which is required to initiate the foundation bearing capacity failure when applied to the structural mass, is estimated by the finite-element method. Eventually, the tilting potential of the foundations is estimated utilizing inelastic response of the nonlinear oscillator. Response of the deep alluvium sites, which involves velocity pulses with periods consistent with the fundamental site period, is significant in determination of inelastic response of low bearing capacity systems. Predictive capability of the methodology developed is tested with actual case data. The methodology is observed to predict irrecoverable tilting potential of foundations consistent with the observations, except for the cases with low seismic bearing capacity. Deviations are explained considering the sensitivity of low-strength systems to asymmetrical behavior and uncertainties involved in seismic demand.
598

Vibration Testing of Structures under Random Support Excitations

Ammanagi, Soumayya January 2015 (has links) (PDF)
Vibration testing of structures constitutes a crucial step in design and commissioning of engineering structures. The focus here is on simulating field conditions in a laboratory so that detailed investigations of the structural behavior under various future load scenarios can be carried out. A major enabling technology in recent years in this field of study, especially, in the context of earthquake engineering, and automotive testing, has been the development of servo-hydraulic actuation systems, which form the principal component of test facilities, such as, multi-axes shake tables for testing building structures under earthquake loads, multi-post testrigs for testing vehicles subjected to road loads, and reaction-wall based test systems for simulating horizontal effects of earthquake loads on building structures. These systems have enabled the conduct of systematic studies on simulation of nonlinear structures under transient loads, simulation of multi-component and spatially varying random loads, and combining numerical and experimental methods with a view to avoid scaling while testing small scale critical components of large built-up structures. The investigations reported in this thesis are in this area of research and are primarily aimed at exploring the potential of servo-hydraulic test systems to address a few intricate issues related to performance assessment of engineering vibrating systems. A broad-based overview of goals of experimental approaches in vibration engineering, including dynamic system characterization and performance assessment, is presented in Chapter 1. Also discussed are the brief details of vibration testing methods developed in the context of earthquake engineering (including quasi-static test, effective force test, shake table test, combined effective force and shake table test, various versions of pseudo-dynamic test, and real-time substructuring) and automotive vehicle testing (including input excitation based methods and response based methods). The discussion notes the remarkable success witnessed in combining mathematical methods and experimental techniques especially in problems of characterization of dynamic system properties. Similar success, however, is observed to be not wide-spread in the context of development of test methods aimed at performance assessment of vibrating systems. The review culminates with the identification of the following three problems to be tackled in the present thesis: (a) development of efficient experimental procedures to estimate time varying reliability of structures under multi-component earthquake loads and similar analysis of vehicle structures under spatially varying random road loads; the focus here is on achieving sampling variance reduction in estimating the reliability; (b) development of experimental procedures to determine optimal cross-power spectral density models of partially specified multi-component random loads so as to produce the highest and lowest response variance in a specified response variable; the focus here is on seismic tests of asymmetric structures under partially specified multi-component earthquake loads, and on characterizing optimal correlations between two parallel tracks which maximize or minimize the vehicle response; and (c) development of a modified pseudo-dynamic test procedure, to incorporate additional components in numerical and experimental modeling in terms of an augmented linearized variational equation, so as to assess and contain propagation of numerical and experimental errors. The subsequent three chapters of the thesis tackle these questions and in doing so the thesis makes the following contributions: (A) Inspired by the Girsanov transformation based Monte Carlo simulation method for estimating time-variant component reliability of vibrating systems, an experimental test procedure, which incorporates the Girsanov transformation step into its folds, has been developed to estimate the time-variant system reliability of engineering systems. The two main ingredients of application of this strategy consists of determination of a control vector, which is artificially introduced to facilitate reduction in sampling variance, and the formulation of the Radon-Nikodym derivative, which serves as the correction to be introduced in order to compensate for the addition of the artificial control. (B) In problems of response analysis of structures subjected to random earthquake loads and vibration of vehicles running on rough roads, it may not be always feasible to completely specify the external actions on the structures. In such situations, it is of interest to determine the most favorable and the least favorable responses, along with the models for missing information in the inputs which produce the extreme responses. The present study, again inspired by existing analytical solutions to this problem, develops an experimental procedure to characterize the optimal excitation models and associated responses. (C) In the context of PsD testing of nonlinear structure to earthquake loads, a refinement in the test procedure involving the treatment of a linearized variational equation is proposed. This has led to the estimation of the evolution of global error norm as test proceeds with time. The estimates of error thus obtained have been used to decide upon altering the time step of integration.
599

Critical Stochastic Seismic Excitation Models For Engineering Structures

Sarkar, Abhijit 08 1900 (has links) (PDF)
No description available.
600

Caractérisation du comportement sismique d’une connexion hybride plancher-voile utilisée comme rupteur de ponts thermiques / Characterization of the seismic behaviour of an hybrid wall-to-floor connection used as thermal break

Le Bloa, Gaël 01 December 2014 (has links)
L'objectif majeur de la présente thèse de doctorat est la validation structurelle d’une connexion hybride plancher-voile pour la reprise de l'action sismique dans les bâtiments en béton armé à voiles. Le manque de références normatives et scientifiques pour la caractérisation de ce type de système, nous a conduits à concevoir un protocole de caractérisation original basé principalement sur une analyse expérimentale à grande échelle du comportement de la liaison plancher-voile. Tout d'abord, nous présentons quelles ont été les problématiques et les exigences qui ont amené à l'innovation du rupteur de ponts thermiques SLABE, connexion hybride pour la jonction plancher-voile. Nous analysons ensuite les protocoles de caractérisation cyclique pour les systèmes structurels similaires ("coupling beams" ou "shearheads"). Sur base de cette réflexion, nous proposons un programme expérimental composé de trois séries d'essais: deux campagnes à grande échelle visant à restituer au mieux les configurations courantes de chargement dans un bâtiment (sollicitations horizontales et verticales), et une campagne d'essais d'ancrage. Ces essais sont capables de caractériser le comportement de la liaison dans les trois directions de l’espace. Les résultats de chaque campagne d'essais sont présentés dans le détail. Ils montrent notamment que la connexion étudiée, sous chargement cyclique, se comporte de façon quasi-élastique et stable pour les niveaux de charge correspondant aux sollicitations sismiques en France métropolitaine. De plus, ces essais ont souligné la grande réserve de ductilité du système, permettant une redistribution des efforts et contribuant ainsi à une meilleure robustesse du système, indispensable pour une sollicitation sismique présentant, par nature, un fort degré d’incertitude. Enfin, nous évaluons l'impact de la connexion plancher-voile sur le comportement structurel des bâtiments au travers d’une analyse structurelle sur des ouvrages de référence. Nous analysons la réponse modale et la redistribution des efforts entre les voiles de contreventement. Cette évaluation nous permet de définir une démarche de dimensionnement pour les ouvrages béton armé munis de ces éléments et de proposer des outils de calcul adaptés à l’ingénieur. L’exhaustivité de la démarche de validation présentée en fait une référence, déjà reconnue par les instances décernant les agréments techniques français, et qui pourrait être proposée comme protocole standard pour la validation des systèmes de rupteurs de ponts thermiques ou de liaison plancher-voile, au niveau européen. / The main objective of the PhD thesis is the structural evaluation of a hybrid structural connection at the slab-to-wall junction in concrete shear wall buildings under seismic action. The lack of normative and scientific literature for the characterization of this kind of systems leads us to devise an original protocol for the characterization which is mainly built on a large-scale experimental analysis of behaviour of the slab-towall connection. First, we explain the reasons that led us to design an innovative thermal break system, the SLABE, which is thermally insulated hybrid connection for the slab-to-wall junction. Then we analyse the existing protocols for the cyclic characterization of similar structural systems ("coupling beams" or "shearheads"). Based on the outcome of this investigation, we propose an experimental program composed with three test series: two large-scale campaigns where the actual loading conditions in a building are reproduced (horizontal and vertical shear forces) and an axial test campaign. The test results provided the required information to correctly characterize the behaviour of the hybrid connection in the three directions in space. The results of the experimental campaigns are presented in detail. In particular, they show that the connection, under cyclic loads, exhibits a quasi-elastic and stable behaviour at usual seismic load levels, in France. In addition, these tests highlight the large reserve of ductility of the system that guarantees the robustness of the system. This is essential for seismic actions which have by nature a high degree of uncertainty. The impact of the slab-to-wall connexion on the structural behaviour of buildings is evaluated through a structural analysis on representative structures. We particularly analyse the modal response and the force redistribution between the internal and external shear walls. Based on the outcome of this study, we suggest a seismic design method for reinforced concrete structures equipped with these structural elements. Along with that, we propose a computational tool for engineers. The completeness of the presented validation approach makes it a benchmark, already recognized by the French authorities granting technical approvals. It could be proposed as a standard protocol for the validation of other thermal break systems or hybrid slab-to-wall connections, at European level.

Page generated in 0.0394 seconds