• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 719
  • 78
  • 21
  • 17
  • 16
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1201
  • 372
  • 236
  • 225
  • 216
  • 189
  • 182
  • 148
  • 145
  • 121
  • 121
  • 119
  • 82
  • 80
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

Two and three dimensional stability analyses for soil and rock slopes

Li, An-Jui January 2009 (has links)
Slope stability assessments are classical problems for geotechnical engineers. The predictions of slope stability in soil or rock masses play an important role when designing for dams, roads, tunnels, excavations, open pit mines and other engineering structures. Stability charts continue to be used by engineers as preliminary design tools and by educators for training purposes. However, the majority of the existing chart solutions assume the slope problem is semi-infinite (plane-strain) in length. It is commonly believed that this assumption is conservative for design, but non-conservative when a back-analysis is performed. In order to obtain a more economical design or more precise parameters from a back-analysis, it is therefore important to quantify three dimensional boundary effects on slope stability. A significant aim of this research is to look more closely at the effect of three dimensions when predicting slope stability. In engineering practice, the limit equilibrium method (LEM) is the most popular approach for estimating the slope stability. It is well known that the solution obtained from the limit equilibrium method is not rigorous, because neither static nor kinematic admissibility conditions are satisfied. In addition, assumptions are made regarding inter slice forces for a two dimensional case and inter-column forces for a three dimensional case in order to find a solution. Therefore, a number of more theoretically rigorous numerical methods have been used in this research when studying 2D and 3D slope problems. In this thesis, the results of a comprehensive numerical study into the failure mechanisms of soil and rock slopes are presented. Consideration is given to the wide range of parameters that influence slope stability. The aim of this research is to better understand slope failure mechanisms and to develop rigorous stability solutions that can be used by design engineers. The study is unique in that two distinctly different numerical methods have been used in tandem to determine the ultimate stability of slopes, namely the upper and lower bound theorems of limit analysis and the displacement finite element method. The limit equilibrium method is also employed for comparison purposes. A comparison of the results from each technique provides an opportunity to validate the findings and gives a rigorous evaluation of slope stability.
572

Characterization and Management of Disasters Waste:Case of Gorkha Earthquake Nepal / 災害廃棄物の特性化と管理:ネパール地震(Gorkha地震)を例として

Raju, Poudel 23 May 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21965号 / 工博第4620号 / 新制||工||1720(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 酒井 伸一, 教授 勝見 武, 准教授 平井 康宏 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
573

Statistická analýza katalogů přirozené a indukované seismicity / Statistical analysis of natural and induced seismicity catalogues

Mazanec, Martin January 2017 (has links)
The main goal of this thesis is to analyze the statistical properties of seismic catalogues of natural and induced seismicity, identify similarities and differences. We compare statistical temporal and magnitude information contained in different types of earthquake catalogues. Six seismostatistical criteria used for identification of natural swarms and mainshock- aftershock earthquake sequences are applied to 10 different catalogues of natural and induced seismicity. We did not find a method to reliably distinguish between natural and induced seismicity based only on temporal and magnitude information contained in catalogues. We show that induced seismicity catalogues are similar to natural earthquake swarms. We report how the set of 6 criteria presented here can be used for distinguishing between mainshock-aftershock sequences and swarm seismicity. We also show that none of the tested criteria can be used independently for distinguishing between different types of seismicity.
574

Earthquake resistant design of precast panel buildings : a case study

Burns, Joseph Gilmary January 1981 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering; and, (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: p. 175-178. / by Joseph Gilmary Burns. / M.S.
575

Controls on earthquake rupture and triggering mechanisms in subduction zones

Llenos, Andrea Lesley January 2010 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Large earthquake rupture and triggering mechanisms that drive seismicity in subduction zones are investigated in this thesis using a combination of earthquake observations, statistical and physical modeling. A comparison of the rupture characteristics of M 7.5 earthquakes with fore-arc geological structure suggests that long-lived frictional heterogeneities (asperities) are primary controls on the rupture extent of large earthquakes. To determine when and where stress is accumulating on the megathrust that could cause one of these asperities to rupture, this thesis develops a new method to invert earthquake catalogs to detect space-time variations in stressing rate. This algorithm is based on observations that strain transients due to aseismic processes such as fluid flow, slow slip, and afters lip trigger seismicity, often in the form of earthquake swarms. These swarms are modeled with two common approaches for investigating time-dependent driving mechanisms in earthquake catalogs: the stochastic Epidemic Type Aftershock Sequence model [Ogata, 1988] and the physically-based rate-state friction model [Dieterich, 1994]. These approaches are combined into a single model that accounts for both aftershock activity and variations in background seismicity rate due to aseismic processes, which is then implemented in a data assimilation algorithm to invert catalogs for space-time variations in stressing rate. The technique is evaluated with a synthetic test and applied to catalogs from the Salton Trough in southern California and the Hokkaido corner in northeastern Japan. The results demonstrate that the algorithm can successfully identify aseismic transients in a multi-decade earthquake catalog, and may also ultimately be useful for mapping spatial variations in frictional conditions on the plate interface. / by Andrea Lesley Llenos. / Ph.D.
576

Earthquake input mechanisms for dam-foundation interaction

Boughoufalah, Mohamed January 1988 (has links)
No description available.
577

Seismic behavior and rehabilitation of a four-storey steel building

Vazquez, Gerardino Aixa 01 July 2000 (has links)
No description available.
578

Validation of FEMA-273 guidelines for performance-based seismic evaluation: case studies of instrumented buildings

Nghiem, Quan X. 01 April 2001 (has links)
No description available.
579

Seismic behavior and design of hybrid coupled wall systems

Kuenzli, Christopher Michael 01 April 2001 (has links)
No description available.
580

The application of advanced inventory techniques in urban inventory data development to earthquake risk modeling and mitigation in mid-America

Muthukumar, Subrahmanyam 27 October 2008 (has links)
The process of modeling earthquake hazard risk and vulnerability is a prime component of mitigation planning, but is rife with epistemic, aleatory and factual uncertainty. Reducing uncertainty in such models yields significant benefits, both in terms of extending knowledge and increasing the efficiency and effectiveness of mitigation planning. An accurate description of the built environment as an input into loss estimation would reduce factual uncertainty in the modeling process. Building attributes for earthquake loss estimation and risk assessment modeling were identified. Three modules for developing the building attributes were proposed, including structure classification, building footprint recognition and building valuation. Data from primary sources and field surveys were collected from Shelby County, Tennessee, for calibration and validation of the structure type models and for estimation of various components of building value. Building footprint libraries were generated for implementation of algorithms to programmatically recognize two-dimensional building configurations. The modules were implemented to produce a building inventory for Shelby County, Tennessee that may be used effectively in loss estimation modeling. Validation of the building inventory demonstrates effectively that advanced technologies and methods may be effectively and innovatively applied on combinations of primary and derived data and replicated in order to produce a bottom-up, reliable, accurate and cost-effective building inventory.

Page generated in 0.0502 seconds