1 |
A Topological Explanation of the Urbach TailIgram, Dale J. 15 July 2016 (has links)
No description available.
|
2 |
Equações diferenciais funcionais neutras, comportamento assintótico e representação / Neutral functional differential equations, asymptotic behaviour and representationTacuri, Patrícia Hilario 29 January 2013 (has links)
O objetivo deste trabalho é investigar propriedades qualitativas das equações diferenciais funcionais neutras (EDFNs) e introduzir uma classe geral de equações chamadas EDFNs em medida. Obtemos resultados sobre o comportamento assintótico para uma classe de EDFNs com coeficientes periódicos, onde o período e o retardamento estão racionalmente relacionados. Também, conseguimos mostrar que a dicotomia exponencial do operador solução das equações diferenciais funcionais com retardamento (EDFRs) não autônomas implica na existência de soluções limitadas para EDFRs não homogêneas associadas. Finalmente, através da teoria das equações diferenciais ordinárias generalizas (EDOs generalizadas), obtemos resultados de existência e unicidade, dependência contnua em relação aos dados inicias, das soluções das EDFNs em medida. Os resultados novos apresentados neste trabalho estão contidos nos artigos [31, 43] / The aim of this work is to investigate qualitative properties of neutral functional differential equations (NFDEs) and introduce a general class of equations called measure NFDE . We obtain results on the asymptotic behavior for a class of NFDEs with periodic coefficients, where the period and delay are rationally related. Moreover, we show that the exponential dichotomy of the solution operator of non autonomous retarded functional differential equations (RFDEs) implies the existence of bounded solutions to the associated non homogeneous RFDEs. Finally, using the theory of generalized ordinary differential equations (generalized ODEs), we obtain results of existence and uniqueness, continuous dependence on parameters of the solutions of measure NFDEs. The new results presented in this work are contained in the articles [31,43]
|
3 |
Equações diferenciais funcionais neutras, comportamento assintótico e representação / Neutral functional differential equations, asymptotic behaviour and representationPatrícia Hilario Tacuri 29 January 2013 (has links)
O objetivo deste trabalho é investigar propriedades qualitativas das equações diferenciais funcionais neutras (EDFNs) e introduzir uma classe geral de equações chamadas EDFNs em medida. Obtemos resultados sobre o comportamento assintótico para uma classe de EDFNs com coeficientes periódicos, onde o período e o retardamento estão racionalmente relacionados. Também, conseguimos mostrar que a dicotomia exponencial do operador solução das equações diferenciais funcionais com retardamento (EDFRs) não autônomas implica na existência de soluções limitadas para EDFRs não homogêneas associadas. Finalmente, através da teoria das equações diferenciais ordinárias generalizas (EDOs generalizadas), obtemos resultados de existência e unicidade, dependência contnua em relação aos dados inicias, das soluções das EDFNs em medida. Os resultados novos apresentados neste trabalho estão contidos nos artigos [31, 43] / The aim of this work is to investigate qualitative properties of neutral functional differential equations (NFDEs) and introduce a general class of equations called measure NFDE . We obtain results on the asymptotic behavior for a class of NFDEs with periodic coefficients, where the period and delay are rationally related. Moreover, we show that the exponential dichotomy of the solution operator of non autonomous retarded functional differential equations (RFDEs) implies the existence of bounded solutions to the associated non homogeneous RFDEs. Finally, using the theory of generalized ordinary differential equations (generalized ODEs), we obtain results of existence and uniqueness, continuous dependence on parameters of the solutions of measure NFDEs. The new results presented in this work are contained in the articles [31,43]
|
4 |
Modeling and Simulation of Amorphous MaterialsPandey, Anup 16 June 2017 (has links)
No description available.
|
Page generated in 0.0184 seconds