• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3137
  • 868
  • 380
  • 301
  • 204
  • 132
  • 74
  • 48
  • 42
  • 29
  • 28
  • 28
  • 28
  • 28
  • 28
  • Tagged with
  • 6982
  • 2414
  • 1316
  • 800
  • 714
  • 657
  • 632
  • 612
  • 611
  • 591
  • 575
  • 535
  • 516
  • 501
  • 482
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

Energy modulated electron therapy : design, implementation, and evaluation of a novel method of treatment planning and delivery

Al-Yahya, Khalid S. January 2006 (has links)
Energy modulated electron therapy (EMET) is a promising treatment modality that has the fundamental capabilities to enhance the treatment planning and delivery of superficially located targets. Although it offers advantages over x-ray intensity modulated radiation therapy (IMRT), EMET has not been widely implemented to the same level of accuracy, automation, and clinical routine as its x-ray counterpart. This lack of implementation is attributed to the absence of a remotely automated beam shaping system as well as the deficiency in dosimetric accuracy of clinical electron pencil beam algorithms in the presence of beam modifiers and tissue heterogeneities. In this study, we present a novel technique for treatment planning and delivery of EMET. The delivery is achieved using a prototype of an automated "few leaf electron collimator" (FLEC). It consists of four copper leaves driven by stepper motors which are synchronized with the x-ray jaws in order to form a series of collimated rectangular openings or "fieldlets". Based on Monte Carlo studies, the FLEC has been designed to serve as an accessory tool to the current accelerator equipment. The FLEC was constructed and its operation was fully automated and integrated with the accelerator through an in-house assembled control unit. The control unit is a portable computer system accompanied with customized software that delivers EMET plans after acquiring them from the optimization station. EMET plans are produced based on dose volume constraints that employ Monte Carlo pre-generated and patient-specific kernels which are utilized by an in-house developed optimization algorithm. The structure of the optimization software is demonstrated. Using Monte Carlo techniques to calculate dose allows for accurate modeling of the collimation system as well as the patient heterogeneous geometry and take into account their impact on optimization. The Monte Carlo calculations were validated by comparing them against output measurements with an ionization chamber. Comparisons with measurements using nearly energy-independent radiochromic films were performed to confirm the Monte Carlo calculation accuracy for 1-D and 2-D dose distributions. We investigated the clinical significance of EMET on cancer sites that are inherently difficult to plan with IMRT. Several parameters were used to analyze treatment plans where they show that EMET provides significant overall improvements over IMRT.
732

The generalized exchange local spin density-functional theory /

Manoli, Soheil Dimitri. January 1986 (has links)
An orbital dependent local spin density-functional (LSD) scheme with a generated exchange, the LSD GX scheme, has been developed based on the correct normalization conditions of an electron gas. This scheme contains no adjustable parameters; the B$ sb1$, B$ sb2$ and $ alpha sp lim$ are constant for all atoms once the shape of the Fermi hole is chosen. These parameters are rigorously calculated using an unspecified Fermi hole correlation factor and they give an exchange density which reduces exactly to the homogeneous free electron gas one at the high electron density limit. / The LSD GX exchange density is corrected for self-interaction (SI) by splitting the total Fermi hole correlation factor into pure-exchange and self-interaction holes. / These new LSD and SI corrected schemes are compared to each other. They also compare very well theoretically and numerically (total energies and eigenvalues) with other local schemes current in the literature. / New equations for the IP and electronegativities of the atoms in these local schemes are derived which give good results.
733

Applications of Optical Spectroscopy in Studies on Energy and Electron Transfer and Solvation Effects in Nanoscale and Molecular Systems

Oh, Megan 13 January 2014 (has links)
This thesis describes three investigations, ranging in subject matters, all of which relating to systems capable of photoinduced reactions involving energy or electron transfer. The phenomenon and the effects of environment in the various systems are explored using different methodologies of optical spectroscopy. As the chapters progress, different investigations introduce and build on fundamental concepts encountered and in complexity of the methodologies used to explore the systems. The first chapter introduces the preparation of water-soluble CdSe nanocrystal clusters. The clusters, created using a protein, are 3-D close-packed self-assemblies of nanocrystals. Due to this close-packed nature, electronic interactions between the nanocrystals allow for energy migration within the cluster. The structural and optical properties of the clusters were described. Then using steady-state spectroscopy, properties of the original nanocrystals were compared to that of the cluster to determine the consequence of nanocrystal coupling interactions and their potential use toward the development of artificial light-harvesting systems. In the second chapter, CdSe nanocrystals are functionalized with a unique electro-active polymer, and the electron transfer between the nanocrystal and the electro-active polymer adsorbate is investigated. Using fluorescence decay measurements, the electron transfer reaction inherent to the system with respect to a comprehensive range of dielectric solvents was explored. The study illustrates the high complexity of seemingly typical nanocrystal-based systems and provides general awareness of what factors need to be considered when dealing with such systems. The final chapter starts with an informal review of ultrafast nonlinear spectroscopy, focusing on two methods, three-pulse photon echo peak shift (3PEPS) and two-dimensional photon echo (2DPE) electronic spectroscopy, and how they are related. A straightforward approach for extracting 3PEPS data from 2DPE results is presented in a preliminary case study of a dye in two different solvents, one of which is electron-donating.
734

Applications of Optical Spectroscopy in Studies on Energy and Electron Transfer and Solvation Effects in Nanoscale and Molecular Systems

Oh, Megan 13 January 2014 (has links)
This thesis describes three investigations, ranging in subject matters, all of which relating to systems capable of photoinduced reactions involving energy or electron transfer. The phenomenon and the effects of environment in the various systems are explored using different methodologies of optical spectroscopy. As the chapters progress, different investigations introduce and build on fundamental concepts encountered and in complexity of the methodologies used to explore the systems. The first chapter introduces the preparation of water-soluble CdSe nanocrystal clusters. The clusters, created using a protein, are 3-D close-packed self-assemblies of nanocrystals. Due to this close-packed nature, electronic interactions between the nanocrystals allow for energy migration within the cluster. The structural and optical properties of the clusters were described. Then using steady-state spectroscopy, properties of the original nanocrystals were compared to that of the cluster to determine the consequence of nanocrystal coupling interactions and their potential use toward the development of artificial light-harvesting systems. In the second chapter, CdSe nanocrystals are functionalized with a unique electro-active polymer, and the electron transfer between the nanocrystal and the electro-active polymer adsorbate is investigated. Using fluorescence decay measurements, the electron transfer reaction inherent to the system with respect to a comprehensive range of dielectric solvents was explored. The study illustrates the high complexity of seemingly typical nanocrystal-based systems and provides general awareness of what factors need to be considered when dealing with such systems. The final chapter starts with an informal review of ultrafast nonlinear spectroscopy, focusing on two methods, three-pulse photon echo peak shift (3PEPS) and two-dimensional photon echo (2DPE) electronic spectroscopy, and how they are related. A straightforward approach for extracting 3PEPS data from 2DPE results is presented in a preliminary case study of a dye in two different solvents, one of which is electron-donating.
735

Electron scattering from laser-excited Ba-138 and Yb-174

Hein, Jeffrey Davis 09 April 2010 (has links)
This thesis describes the experimental study of electron scattering processes from laser-excited barium and ytterbium atoms. These include the electron-impact ionization-excitation from Ba (...6s6p) 1P1 and Ba (...6s5d) 1,3D1,2 to Ba+ (...6p) 2P3/2, the elastic electron scattering from Ba (...6s6p) 1P1 and Ba (...6s5d) 1,3D1,2, and the electron-impact excitation from Yb (...6s6p) 3P1 to Yb (...6s7s) 3S1, Yb (...6s6p) 1P1, and Yb (...6s5d) 3D1,2,3. The experiments utilized electron impact energies in the range of 5 eV to 50 eV. Differential and integral scattering cross sections were determined, and are presented both on absolute and relative scales. By controlling the laser polarization, alignment and orientation parameters characterizing the scattering processes were determined. Additionally, the barium ionization-excitation study observed polarization dependencies of ion line emission fluorescence for radiative decay from Ba+ (...6p) 2P3/2 to Ba+ (...6s) 2S1/2, providing information about the final ionic state composition. Along with experimental measurements of electron-atom collisions, this thesis describes the design and development of a computer-controlled data acquisition system and a laser frequency stabilization system.
736

Numerical studies of heterojunction transport and High Electron Mobility Transistor (HEMT) devices

Yu, Tsung-Hsing 12 1900 (has links)
No description available.
737

Electron spin resonance determination of the efficiency of free radial production in biological membranes by various types of ionizing radiation.

Fisher, Henry Lee 05 1900 (has links)
No description available.
738

Quantitative measurement of surface wear via a non-vibrating kelvin probe

Meade, Roy Edward 05 1900 (has links)
No description available.
739

Study of phase relationships near 211 YBCO along 211-123 and 211-CuO phase fields : the preparation and characterization of a new phase Y₅Ba₁₀CuOx

Deshpande, Jaylaxmi N. 12 1900 (has links)
No description available.
740

The dendritic growth of γ in astroloy

Macia, Mario Luis 12 1900 (has links)
No description available.

Page generated in 0.0193 seconds