• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Duplexer pro pásmo 5,6 GHz / Duplexer for the frequency band 5.6 GHz

Opletal, Prokop January 2011 (has links)
The aim of this master’s theses was a designing of duplexer working in non license frequency band 5.6GHz. The theses is concerning with selection of suitable concept for a given duplexer, with creating a model in software for simulation of distribution of electromagnetic field and with subsequent implementation of duplexer and verifying its parameters.
2

Design And Fabrication Of Rf Mems Switches And Instrumentation For Performance Evaluation

Atasoy, Halil Ibrahim 01 September 2007 (has links) (PDF)
This thesis presents the RF and mechanical design of a metal-to-metal contact RF MEMS switch. Metal-to-metal contact RF MEMS switches are especially preferred in low frequency bands where capacitive switches suffer from isolation due to the limited reactance. Frequency band of operation of the designed switch is from DC to beyond X-band. Measured insertion loss of the structure is less than 0.2 dB, return loss is better than 30 dB, and isolation is better than 20 dB up to 20 GHz. Isolation is greater than 25 dB below 10 GHz. Hence, for wideband applications, this switch offers very low loss and high isolation. Time domain measurement is necessary for the investigation of the dynamic behavior of the devices, determination of the &lsquo / pull in&rsquo / and &lsquo / pull out&rsquo / voltages of the membranes, switching time and power handling of the devices. Also, failure and degradation of the switches can be monitored using the time domain setup. For these purposes a time domain setup is constructed. Moreover, failure mechanisms of the RF MEMS devices are investigated and a power electronic circuitry is constructed for the biasing of RF MEMS switches. Advantage of the biasing circuitry over the direct DC biasing is the multi-shape, high voltage output waveform capability. Lifetimes of the RF MEMS devices are investigated under different bias configurations. Finally, for measurement of complicated RF MEMS structures composed of large number of switches, a bias waveform distribution network is constructed where conventional systems are not adequate because of the high voltage levels. By this way, the necessary instrumentation is completed for controlling a large scale RF MEMS system.
3

Radiofrequency Induced Heating of Implanted Stereo-electroencephalography Electrodes During MRI Scan: Theory, Measurements and Simulations

Bhusal, Bhumi Shankar 23 May 2019 (has links)
No description available.

Page generated in 0.0632 seconds