• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 7
  • 2
  • 1
  • Tagged with
  • 25
  • 10
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Insight into the mechanism of hydrogenases by means of magnetic resonance experiments and DFT calculations

Stein, Matthias. Unknown Date (has links)
Techn. University, Diss., 2001--Berlin.
12

De-novo-synthetisierte Proteine mit Metalloporphyrinkofaktoren

Fahnenschmidt, Monika. Unknown Date (has links)
Techn. Universiẗat, Diss., 2000--Berlin.
13

Exchange coupled manganese complexes: model systems for the active centres of Redoxproteins investigated with EPR-Techniques

Schäfer, Kai-Oliver. Unknown Date (has links) (PDF)
Techn. University, Diss., 2002--Berlin.
14

Untersuchungen zur Bindung des sekundären Akzeptors in Photosystem I mit Methoden der EPR-Spektroskopie

Teutloff, Christian Bork. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2003--Berlin.
15

Cw and pulsed EPR spectroscopy of Cu(II) and V(IV) in metal-organic framework compounds: metal ion coordination and adsorbate interactions

Jee, Bettina 24 October 2013 (has links) (PDF)
Metal-organic framework (MOF) compounds as a new class of porous coordination polymers consists of metal ions or clusters linked by organic molecules. They have gained recent interest because of their large surface areas and huge variety of the porous network structures. They exhibit interesting adsorption properties and therefore are potential candidates for various technical applications. In this work, continuous wave (cw) and pulsed electron paramagnetic resonance (EPR) methods such as pulsed electron-nuclear double resonance (ENDOR) and hyperfine sublevel correlation (HYSCORE) spectroscopy are applied to study metal-organic frameworks with respect to different aspects of their properties: The host-guest interactions between Cu2+ ions in [Cu3(btc)2]n (HKUST-1; btc: 1,3,5-benzenetricaboxylate) with adsorbed methanol (CH3OH), 13C enriched carbon monoxide and dioxide (13CO, 13CO2), hydrogen (H2), deuterium (D2) and mixed isotopic HD. In [Cu3(btc)2]n, the Cu2+ ions are connected to binuclear Cu/Cu paddle wheel units. Since the Cu2+ ions in the [Cu3(btc)2]n are antiferromagnetically coupled, the new compound [Cu2.97Zn0.03(btc)2]n is synthesized by isomorphous substitution containing about 1 % paramagnetic Cu/Zn paddle wheel units. The modified Cu/Zn paddle wheel units prove to be a very sensitive probe for the interactions with the adsorbed molecules. Secondly, the exchange interactions of antiferromagnetically coupled Cu/Cu paddle wheel units as well as additional inter-paddle wheel exchange interactions between the Cu/Cu pairs are studied in [Cu2(bdc)2(dabco)]n, a layered MOF with 1,4-benzenedicaboxylate (bdc) as linker and 1,4-diazabicyclo[2.2.2]octane (dabco) acting as pillars between the layers. In comparison to [Cu3(btc)2]n, the additional inter-paddle wheel exchange interactions are much easier disturbed by incorporation of Zn2+ ions into the framework structure. Third, the structural dynamics of the framework is investigated in the compound [Al(OH)(bdc)]n (MIL-53) which was isomorphously substituted by V(III)/V(IV) species. The 51V hyperfine structure revealed to be sensitive to the so-called breathing effect, a flexible structural behaviour upon guest adsorption/desorption or upon thermal treatment. It is shown that the aluminum ions can be substituted by vanadium but the octahedral coordination environment changes slightly to a pseudo-octahedral or a square-pyramidal coordination. Based on the hyperfine interactions between the electron spin and the nuclear spins of the surrounding atoms, structural models can be derived from orientation-selective measurements. In such a way, structural information of materials like powder samples and adsorbate complexes can be obtained which are hardly or even not accessible by other methods.
16

Cw and pulsed EPR spectroscopy of Cu(II) and V(IV) in metal-organic framework compounds: metal ion coordination and adsorbate interactions

Jee, Bettina 25 September 2013 (has links)
Metal-organic framework (MOF) compounds as a new class of porous coordination polymers consists of metal ions or clusters linked by organic molecules. They have gained recent interest because of their large surface areas and huge variety of the porous network structures. They exhibit interesting adsorption properties and therefore are potential candidates for various technical applications. In this work, continuous wave (cw) and pulsed electron paramagnetic resonance (EPR) methods such as pulsed electron-nuclear double resonance (ENDOR) and hyperfine sublevel correlation (HYSCORE) spectroscopy are applied to study metal-organic frameworks with respect to different aspects of their properties: The host-guest interactions between Cu2+ ions in [Cu3(btc)2]n (HKUST-1; btc: 1,3,5-benzenetricaboxylate) with adsorbed methanol (CH3OH), 13C enriched carbon monoxide and dioxide (13CO, 13CO2), hydrogen (H2), deuterium (D2) and mixed isotopic HD. In [Cu3(btc)2]n, the Cu2+ ions are connected to binuclear Cu/Cu paddle wheel units. Since the Cu2+ ions in the [Cu3(btc)2]n are antiferromagnetically coupled, the new compound [Cu2.97Zn0.03(btc)2]n is synthesized by isomorphous substitution containing about 1 % paramagnetic Cu/Zn paddle wheel units. The modified Cu/Zn paddle wheel units prove to be a very sensitive probe for the interactions with the adsorbed molecules. Secondly, the exchange interactions of antiferromagnetically coupled Cu/Cu paddle wheel units as well as additional inter-paddle wheel exchange interactions between the Cu/Cu pairs are studied in [Cu2(bdc)2(dabco)]n, a layered MOF with 1,4-benzenedicaboxylate (bdc) as linker and 1,4-diazabicyclo[2.2.2]octane (dabco) acting as pillars between the layers. In comparison to [Cu3(btc)2]n, the additional inter-paddle wheel exchange interactions are much easier disturbed by incorporation of Zn2+ ions into the framework structure. Third, the structural dynamics of the framework is investigated in the compound [Al(OH)(bdc)]n (MIL-53) which was isomorphously substituted by V(III)/V(IV) species. The 51V hyperfine structure revealed to be sensitive to the so-called breathing effect, a flexible structural behaviour upon guest adsorption/desorption or upon thermal treatment. It is shown that the aluminum ions can be substituted by vanadium but the octahedral coordination environment changes slightly to a pseudo-octahedral or a square-pyramidal coordination. Based on the hyperfine interactions between the electron spin and the nuclear spins of the surrounding atoms, structural models can be derived from orientation-selective measurements. In such a way, structural information of materials like powder samples and adsorbate complexes can be obtained which are hardly or even not accessible by other methods.:1 Introduction 1.1 Electron paramagnetic resonance spectroscopy for investigation of porous materials 1.2 Metal-organic frameworks 1.3 Implementation of paramagnetism by isomorphous substitution 1.4 EPR spectroscopic methods 1.4.1 Spin Hamiltonian 1.4.2 cw EPR spectroscopy 1.4.3 Pulsed EPR spectroscopy 1.5 Description of the project 2 [Cu2.97Zn0.03(btc)2]n 2.1 Introduction: Monometallic [Cu3(btc)2]n (1) 2.1.1 Spin coupling 2.1.2 Adsorption of H2O 2.1.3 Adsorption of DTBN 2.2 Isomorphous substitution of Cu2+ by Zn2+ in [Cu3(btc)2]n 2.2.1 Synthesis and characterisation of [Cu2.97Zn0.03(btc)2]n (2) 2.2.2 cw EPR spectroscopy of 2 2.2.3 Pulsed EPR spectroscopy of 2 2.2.4 Summary: Zn2+ substitution 2.3 Adsorption of methanol (MeOH) on [Cu2.97Zn0.03(btc)2]n (2_MeOH) 2.3.1 cw EPR spectroscopy of 2_MeOH 2.3.2 Pulsed EPR spectroscopy of 2_MeOH 2.3.3 Discussion 2.3.4 Summary: adsorption of MeOH 2.4 Adsorption of 13CO2 and 13CO on [Cu2.97Zn0.03(btc)2]n (2_CO2, 2_CO) 2.4.1 cw EPR spectroscopy of 2_CO2 and 2_CO 2.4.2 Pulsed EPR spectroscopy of 2_CO2 and 2_CO 2.4.3 Discussion 2.4.4 Summary: adsorption of 13CO2 and 13CO 2.5 Adsorption of H2, D2 and HD on [Cu2.97Zn0.03(btc)2]n (2_HH, 2_DD and 2_HD) 2.5.1 cw EPR spectroscopy of 2_HH, 2_DD and 2_HD 2.5.2 Pulsed EPR spectroscopy of 2_HH, 2_DD and 2_HD 2.5.2.1 3p ESEEM spectroscopy of 2_HH, 2_DD and 2_HD 2.5.2.2 Davies-ENDOR spectroscopy of 2_HH 2.5.2.3 Davies-ENDOR spectroscopy of 2_HD 2.5.2.4 Davies-ENDOR spectroscopy of 2_DD 2.5.3 Discussion 2.5.4 Summary: adsorption of H2, D2 and HD 2.6 Conclusion: [Cu2.97Zn0.03(btc)2]n 3 [Cu2(bdc)2(dabco)]n (3) and [Cu(2-x)Zn(x)(bdc)2(dabco)]n (3_x) 3.1 [Cu2(bdc)2(dabco)]n (3) 3.2 [Cu1.9Zn0.1(bdc)2(dabco)]n (3_0.1) 3.3 [Cu(2-x)Zn(x)(bdc)2(dabco)]n (3_0.5, 3_1.0, 3_1.5 and 3_1.9) 3.4 Determination of the exchange coupling constant J 3.5 Discussion 3.6 Conclusions: [Cu(2-x)Zn(x)(bdc)2(dabco)]n (3_x) 4 [(AlOH)1-x(VO)x(bdc)]n (4) and [(AlOH)1-x(VO)x(ndc)]n (5) 4.1 Introduction 4.2 EPR spectroscopic investigations of mixed-metal bdc compounds 4.3 EPR spectroscopic investigations of mixed-metal ndc compounds 4.4: Conclucions: V(III)/V(IV) substitution in [Al(OH)(bdc)]n and [Al(OH)(ndc)]n 5 Summary and Conclusion 5.1 Host-guest interactions 5.2 Exchange couplings of Cu/Cu pairs 5.3 Structural dynamics of the bdc and the ndc framework 5.4 Conclusion 6 Appendix 6.1 Experimental details and additional spectra 6.2 Instrumental details 6.3 Curriculum vitae and publications
17

Catalytic center of hydrogenases EPR, ENDOR and FTIR studies /

Schröder, Olga. Unknown Date (has links)
Techn. University, Diss., 2001--Berlin.
18

Model Calculations of Radiation-Induced Damage in Thymine Derivatives

Close, David, Forde, Gareth, Gorb, Leonid, Leszczynski, Jerzy 01 October 2003 (has links)
When the thymine base is oxidized, the resulting cation may deprotonate reversibly at N3, or irreversibly at >C5-CH3. In all thymine derivatives studied so far in the solid state, there is always a significant concentration of a radical formed by net H-abstraction from the >C5-CH 3. DFT calculations on this allyl-like radical are in good agreement with the experimental results for both the isotropic and anisotropic hyperfine couplings. There is a tendency for the thymine cation to deprotonate at N3 in solution. Calculations on the N3 deprotonated thymine cation yield two structures, one planar radical with an unusually large N1-C2 bond length, and one nonplanar radical with the N3 more than 25° out of the molecular plane. Calculations show that the structure with the lowest energy is the allyl-like radical.
19

From the Primary Radiation Induced Radicals in DNA Constituents to Strand Breaks: Low Temperature EPR/ENDOR Studies

Close, David 01 January 2008 (has links)
This review contains the results of EPR/ENDOR experiments on DNA constituents in the solid-state. Most of the results presented involve single crystals of the DNA bases, nucleosides and nucleotides. The emphasis is on low-temperature ENDOR results. Typical experiments involve irradiations at or near helium temperatures in attempts to determine the primary radiation induced oxidation and reduction products. The use of the ENDOR technique allows one to determine the protonation state of the initial products. Subsequent warming of the sample facilitates a study of the reactions that the primary products undergo. A summary of the results is provided to show the relevance the study of model compounds has in understanding the radiation chemistry of DNA.
20

Model Calculations of Radiation-Induced Damage in 1-Methyluracil:9- Ethyladenine

Chen, Yuhua, Close, David 01 April 2002 (has links)
Detailed EPR and ENDOR experiments on the cocrystalline complex of 1-methyluracil:9-Ethyladenine (MUEA) have revealed that the major radiation-induced products observed at 10 K on MU are: MUEA1, a radical formed by net hydrogen abstraction from the N1-CH3 methyl group, MUEA2, the MU radical anion, and MUEA3, the C5 H-addition radical. The following four products were observed on the adenine moiety at 10 K, MUEA4, the N3 protonated adenine anion, MUEA5, the native adenine cation, MUEA6, the amino deprotonated adenine cation, and MUEA7, the C8 H-addition radical formed by net H-addition to C8 of the adenine base. The geometries, energetics, and hyperfine properties of all possible radicals of MU and EA, the native anions and cations, as well as radicals formed via net hydrogen atom abstraction (deprotonated cations) or addition (protonated anions) were investigated theoretically. All systems were optimized using the hybrid Hartree-Fock-density functional theory functional B3LYP, in conjunction with the 6-31G(d,p) basis set of Pople and co-workers. Calculations of the anisotropic hyperfine couplings for all the radicals observed in MUEA are presented and are shown to compare favorably with the experimentally measured hyperfine couplings. The calculated ionizations potentials indicate that EA would be the preferred oxidation site. In MUEA, both the adenine cation and its N4-deprotonated derivative were observed. The calculated electron affinities indicate that MU would be the preferred reduction site. In MUEA radical, MUEA2 is a uracil reduction product, however the protonation state of this radical could not be determined experimentally. Calculations suggest that MUEA2 is actually the C4=O protonated anion.

Page generated in 0.0378 seconds