571 |
Modular Hybridization of Solar Thermal Power Plants For Developing NationsDarwish, Mazen January 2012 (has links)
The current energy scenario in the developing nations with abundant sun resource (e.g. southern Mediterranean countries of Europe, Middle-East & North Africa) relies mainly on fossil fuels to supply the increasing energy demand. Although this long adopted pattern ensures electricity availability on demand at all times through the least cost proven technology, it is highly unsustainable due to its drastic impacts on depletion of resources, environmental emissions and electricity prices. Solar thermal Hybrid power plants among all other renewable energy technologies have the potential of replacing the central utility model of conventional power plants, the understood integration of solar thermal technologies into existing conventional power plants shows the opportunity of combining low cost reliable power and Carbon emission reduction. A literature review on the current concentrating solar power (CSP) technologies and their suitability for integration into conventional power cycles was concluded, the best option was found be in the so called Integrated solar combined cycle systems (ISCCS); the plant is built and operated like a normal combined cycle, with a solar circuit consisting of central tower receiver and heliostat field adding heat to the bottoming Rankine cycle. A complete model of the cycle was developed in TRNSYS simulation software and Matlab environment, yearly satellite solar insolation data was used to study the effect of integrating solar power to the cycle throw-out the year. A multi objective thermo economic optimization analysis was conducted in order to identify a set of optimum design options. The optimization has shown that the efficiency of the combined cycle can be increased resulting in a Levelized electricity cost in the range of 10 -14 USDcts /Kwhe. The limit of annual solar share realized was found to be around 7 % The results of the study indicate that ISCCS offers advantages of higher efficiency, low cost reliable power and on the same time sends a green message by reducing the environmental impacts in our existing power plant systems.
|
572 |
Open Geospatial Data for Energy PlanningBerndtsson, Carl January 2016 (has links)
Geographic information systems (GIS) are increasingly being used in energy planning and by private sector practitioners. Through qualitative interviews with 49 leading practitioners in the public and private sector, this thesis establishes the data of most importance, current open access data sources for energy access along with the information currently lacking from open data sources. The interviews revealed grid infrastructure, population density, renewable power potential and energy expenditure to be the most sought after data for both practitioners’ groups. However, it was evident that the private sector had a stronger focus on land, water resource and climate data determining the renewable power potential for a specific area of interest, while the public sector focused on socioeconomic indicators and energy expenditure. A following data aggregation and analysis of the most desired datasets showed that a majority of the needed datasets were available with the exception of energy expenditure. A least-cost option electrification model developed by KTH-dESA has proven to be a powerful tool in assessing the cost of nationwide electrification. This thesis compares the average least-cost option electrification cost for each region in Tanzania with a projected average income. The comparison showed that the average household cost for least-cost option electrification as a share of projected household income varies between regions. The average share per household in the western regions of Tanzania were significantly higher compared to households in the central and eastern regions. The comparison was combined with the geographical location of donor-supported energy development projects showing that majority of the projects were located in the central parts of Tanzania and not targeting the most vulnerable households in regions furthest away from the national grid. In order to successfully introduce electricity nationwide in Tanzania, more support needs to be provided to the poorest regions. Open data aggregation and coordination are the key to expand the support from GIS for energy access. Even though multiple data sources have been identified, they are scattered and leads to data being collected again. Coordinated efforts aimed to provide means to share aggregated updated and freely accessible data can help reduce high transaction costs, helping to alleviate energy poverty. / Geografiska informationssystem (GIS) används i allt större utsträckning inom energiplanering och av privata aktörer. Genom kvalitativa intervjuer med 49 ledande aktörer i offentlig och privat sektor redogör denna rapport för de viktigaste dataseten för aktörer, befintliga källor för öppen data och vilka informationsluckor som finns i dessa källor. Intervjuerna visade att dataseten gällande energiinfrastruktur, befolkningstäthet, potential för förnybar energi och energiutgifter var viktigast för både offentlig och privat sektor. Privat sektor hade ett större fokus på land, vatten och klimatdata, som alla är viktiga för att avgöra ett områdes potential för förnybar energi. Offentlig sektor hade ett större intresse av socioekonomiska faktorer och energiutgifter. En dataaggregation och analys visade att de mest eftertraktade dataseten fanns öppet tillgängliga med undantag för energiutgifter. En modell för energialternativ till lägsta kostnad utvecklad av KTH-dESA har visat sig vara ett kraftfullt verktyg för att kostnadsbedöma en landsomfattande elektrifiering. I en fallstudie för Tanzania jämför denna rapport den genomsnittliga kostnaden för hushåll för en implementering av en sådan elektrifiering med en beräknad genomsnittlig hushållsinkomst. Jämförelsen visade att kostnaden för hushållen som andel av total hushållsinkomst varierar kraftigt mellan regioner. Den genomsnittliga andelen av hushållsinkomsten som skulle läggas på elektricitet i de västra regionerna av Tanzania var betydligt högre jämfört med de centrala och östra regionerna. Jämförelsen kombinerade även detta resultat med den geografiska positionen hos biståndsstödda energiprojekt. vilken visade att majoriteten av dessa projekt fanns i de centrala delarna av landet och inte i de mest utsatta regionerna som präglas av låg genomsnittlig inkomst och långa avstånd till det nationella kraftnätet. För att framgångsrikt kunna genomföra en landsomfattande elektrifiering behöver mer stöd ges till dessa regioner. Aggregation av öppen data och koordinering är nyckeln till att framgångsrikt utveckla GIS som stöd vid framtida energiprojekt som syftar till att ge fler tillgång till elektricitet. Trots att flertalet datakällor kunde identifieras är dessa spridda vilket leder till att data behöver samlas in gång på gång. Koordinerade insatser för att öka möjligheten till att dela redan insamlad öppen och uppdaterad data kan bidra till att minska transaktionskostnader och därmed minska energifattigdomen
|
573 |
Analysis of the Expected Development of Solar PV Market in TurkeySabah, Ibrahim January 2014 (has links)
Electricity generation through solar photovoltaic (PV) technology has been one of the leading renewable energy generation options in the global arena and in many countries that are working to address increasing energy demand and high fuel import dependencies. Due to the feed in tariff (FIT) amendment in 2011 and decreasing costs in global PV sector, the interest in this emerging market is quickly increasing in Turkey. The aim of this thesis is to explore the prospects for development of the solar PV market in Turkey, considering residential, commercial and utility scale PV systems with rooftop or ground mounted installations. The economic situation, the energy profile, regulatory framework for solar energy and the market conditions in the country were researched. The ultimate purpose was to assess the overall conditions to attract investors, and estimate the development of the solar PV market growth in Turkey particularly in the next few years. High irradiation levels, limited domestic energy resources and high interest in license applications suggest a big potential for solar PV electricity in Turkey. However, the regulatory framework is not yet suitable for a fast growth of this emerging solar PV market in the country due to lack of political support and experience in related government functions. Despite the high interest and demand for commercial systems, the solar PV market in Turkey is expected to grow linearly as a start. This contrast with precedents in leading European markets, which experienced exponential growth at the beginning. This study shows that there is a need for performance improvement within the regulative authorities, time for stakeholders to experience the market and more comprehensive and stable legislation. However, in the long term, solar PV technology is expected to gain high competitive advantage due to improving financial conditions in the country, increase in electricity prices (e.g. grid parity has already been reached for residential systems), and cost reductions for PV components around the world.
|
574 |
Potential for Biogas Production from Residues of a Slaughter House at High Altitude in BoliviaCaille L'Etienne, Thibault January 2010 (has links)
The potential for biogas production with residues of a slaughter house in the climatic conditions of LaPaz has been determined during the master’s thesis. The project was carried out at a pilot plantconsisting of three tubular biodigesters made of polyethylene. The study showed that there is strong potential for biogas and biofertilizer production from residues ofslaughter houses at high altitude and cold climate in Bolivia, even by using blood which is the majorcomponent responsible of the water contamination. This production led to avoid water contamination,to limit the greenhouse effect by limiting the methane release into the atmosphere due to uncontrolledwaste management, and to improve the agriculture yields through the use of organic fertilizer. After afirst period of investigation, new parameters of operation of the pilot plant were defined in order tooptimize the biogas and biofertilizer production. But the tubular biodigesters made of polyethylenecould difficultly be further developed at industrial scale. Thus the final part of the project consisted in the design of a new type of low-cost pilot plant whichcould solve the environmental burden caused by slaughter houses residues in all Bolivia, whilegenerating more economical benefits from the biogas and biofertilizer production. This pilot plant wasintended to be further scaled-up and developed in all Bolivia if the new investigation carried out afterthe master’s thesis would give satisfactory results. The estimations of industrial plants based on theresults of the pilot plant of Achachicala showed that the slaughter houses could work only by usingbiogas resulting from the anaerobic digestion of their residues, while generating important amounts ofbiofertilizer which would be a source of important economical benefits.
|
575 |
How to reach a better consideration of physical limits in energy policies design?Hajjar, Joseph January 2014 (has links)
The energy system is today facing a major double issue: the shrinking of easily accessible and cheap fossil resources on the upstream side, and climate change on the downstream side. Energy policies must integrate this double physical constraint, as well as other physical limits, and have a long time and a global horizon, in order to anticipate and avoid a future energy and climate crisis that could be dramatic to society. However, politics tend to focus on other aspects (satisfying immediate social desires for instance).This report hence discusses options available to allow for a better consideration of physical constraints in energy policies design. As they strongly rely on energy scenarios, it appears that energy policy makers need a more transparent and didactic frame for scenario design and analysis. That is why The Shift Project has been developing an original, transparent and pedagogical energy scenario modeling tool, Rogeaulito, which is intended to highlight physical constraints. By developing narratives (quantified stories) and organizing and animating workshops with policy makers, using Rogeaulito, it is possible to convey messages and knowledge about the energy system and issues, and improve the policy making process. Nevertheless, policy makers remain subject to socio-political influences and to self-interest concerns, which can prevent them from making socially optimal choices on the long term. Therefore, the civil society as a whole must be included in a continuous and coherent debate to improve the common understanding of energy issues, of the (physical, cultural and psychological) obstacles to solving them and of concrete consequences of the possible choices. It will then be possible to give a democratic, legitimate and collaborative orientation to long term energy policies. At the end, it appears that a comprehensive and multidisciplinary approach, involving physics, environmental science, economics, technology, sociology, political science and psychology is required to finally produce energy policies appropriate in order to face the issues mentioned above.
|
576 |
Analysis of euoniticellus intermedius, larva gut micro-flora: potential application in the production of biofuels.Mabhegedhe, Munamato 12 September 2012 (has links)
Recent years have seen a dramatic increase in first generation bio-fuel production, mainly driven by concerns of climate change and rising prices of transportation fossil fuels. Due to significant pressure on the few available food sources, second generation bio-fuels have entered the fray, as a sustainable alternative. This research‟s aim was to search for cellulolytic micro-organisms and enzymes from the gut of the dung beetle, Euoniticellus intermedius, (Coleoptera: Scarabaeida) that can be used in the production of second generation bio-fuels. Dung beetle larvae were dissected and the gut micro-flora cultured in cellulose medium. Bacterial growth and cellulase activity was monitored on a daily basis. DNA isolation was then done on the cellulose medium-cultured microbes and the isolated DNA cloned in E. coli. The clones were screened for cellulase activity using plate assays. A total of 7 colonies out of 160 screened colonies showed positive CMC (endo-β-1,4-glucanase) and MUC (cellobiohydrolase) activities. Sequencing of these positive colonies yielded mostly bacteria belonging to the Enterobacteriaceae family, most of which have not been previously reported to have cellulase activity. This study‟s findings prove that in addition to this dung beetle‟s gut being a fruitful source of microbial biodiversity, it is also a potential source of cellulolytic micro-organisms and enzyme activities that will aid the function and design of future bioreactors for the bio-fuel industry.
|
577 |
Solar Pool Heating at Obbola School : A pilot study about performance evaluation of different solar thermal collectors and their long-term economic benefits for Umeå Municipality / Solvärme till Obbola skolan : En förstudie om prestandautvärdering av olika solfångare och deras långsiktiga ekonomiska lönsamhet för Umeå kommunTekle, Tekie January 2022 (has links)
This pilot study aims to evaluate the thermal performance of different types of solar thermal collectors and their long-term economic benefits for Obbola school, located within the Umeå municipality. The goal of this project is to investigate how much thermal and electrical energy can be generated annually and even during summertime by using only solar collectors for heating purposes of an outdoor pool at Obbola school. The solar thermal collectors that are selected for this project are Solar Keymark-certified flat plate, evacuated tube, and photovoltaic hybrid solar collectors. This study will include designing and simulation roof-integrated and ground-based collectors in Polysun software and determine their thermal performance at European Standards of 45° and collectors facing true south. The simulations in Polysun were conducted on the main site roof area of 65 m2 and a steep grass area of 66 m2 behind the main roof.This pilot study shows that only during the summertime, between the 1st of May and the 31st of August, flat and evacuated tube solar collectors can generate between 4.5 - 5.1% of the school's annual average thermal energy needs. The total average generated thermal energy by these collectors during a year is about 20800 kWh. A hybrid solar collector's thermal energy generated during the summertime covers only 0.6% of 400215 kWh, the annual average thermal energy the school needs. At the same time, the generated electricity will cover only 1.2% of the average electricity the Obbola school needs, which is 539600 kWh.Some economic analyses were conducted to evaluate the long-term economic benefits of installing solar thermal collectors for Umeå municipality, including payback period, life cycle profit, annuity, and life cycle costs. The payback period results show that these collectors have between 9 to 20 years of returning their initial investment. This economic analysis was based on the collector's service life between 25 to 40 years, depending on the brands and manufacturers. These collectors' average life cycle profit revenue is between 178816 SEK and 294415 SEK after 25 and 40 years, respectively. This profit margin makes it very attractive for Umeå municipality, and this model can be used for further implementation at other schools within the municipality. The annual annuity revenue from these collectors is 10269 SEK to 12737 SEK after 25 and 40 years of service, respectively. The results from the return-on-investment show that the installation will give about a percentage profit of 2.8% to 3.5% between 25 and 40 years, respectively. These collectors' average life cycle costs over 25 and 40 years are 358094 SEK and 677231 SEK, respectively. According to the economic analyses, the results show that this pilot study will be a very profitable investment for the Umeå municipality.
|
578 |
An open source approach to Sweden's energy system : A review of future energy pathwaysNawfal, Saadi Failali January 2013 (has links)
This paper discusses the development of an energy systems model for Swedenconsidering electricity, heat and direct fossil fuel consumption in the residential,industrial and transport sectors as well as the energy interaction with the other Nordiccountries and its impact on the Swedish energy system. The model is developed in theOpen source energy modelling system (OSeMOSYS) (Mark Howells 2011) andshowcases potential energy investment options for Sweden in the next four decades(2010-2050). It considers different scenarios and provides a technology neutralassessment of how Sweden can invest in energy infrastructure in the most judiciousway. The paper also describes the new user interface developed called ANSWEROSeMOSYS.The paper further discusses the results of the different scenarios. Thebusiness as usual scenario shows an inclination towards investments in nuclear power.Further scenarios consider the gradual phasing out of the use of oil in CHP plants andnuclear power as well as new energy policies and tax reforms. The paper discusses theseresults in detail and demonstrates how Sweden could improve its energy infrastructureconsidering different policy implications and constraints put up by the availability andfeasibility of different resources. Finally, the prospect of wider stakeholder engagementbased on this model is discussed. Building on the open-source nature of the model,inputs and modifications from research institutes, energy modelling experts,government bodies, as well as the wider public will be incorporated into the model. Thesource code and modelling data will be made publicly available.
|
579 |
A review of the feasibility of alternative energy system using an energy return on investment analysisJeanson, Joshua Hans 03 May 2019 (has links) (PDF)
To support further technology development and to promote the growth of a renewable biofuels industry that will satisfy the stated expectations of anticipated energy needs, it is essential that energy production systems provide a net energy gain over the course of their lifetime. As a means to provide accurate analysis to the value of alternative energy systems this paper provides a mechanism to evaluate energy systems in terms of energy generation ratios that is in terms of existing analysis techniques utilized in existing energy generation areas, such as the oil industry. This paper also proposes techniques that help perform this net energy analysis in terms of the specific economy considering the infrastructure investment.
|
580 |
Energy losses from a concrete digester : Analysis of concrete digester at Lundsby biogasKjellsson, Hugo January 2022 (has links)
Digesters at a biogas plant have high temperatures and poor insulation. There is great potential to save energy by improving the construction. This study has two aims. One is to compare the difference between a simple steady-state calculation and a calculation that uses simulated values from Heat2. The second is to develop an improved insulation method at the concrete digester that can be used in future projects. Ten different insulation scenarios have been simulated to understand how to improve the insulation method to develop an idea of where the insulation has the most impact. Then a combined insulation method was created from the scenarios. That combined method was then simulated with 5 different insulation thickness to find the most profitable design. The conclusion was that there is great value in making more advanced calculations for the walls and floor because the energy losses are very excessive using the simplified calculation, especially on surfaces covered in soil. It was proved difficult to calculate the losses for the roof, this was because the assumption that was needed to perform the calculation does not mirror the reality. Due to this, the roof has been neglected in the suggested insulation method. The insulation method proposed provides an energy saving of 58 MW h/year and a discounted payback time of 4, 3 years if the saved energy can be delivered as 90◦C degree hot water into the district heating network.
|
Page generated in 0.0777 seconds