• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and In Situ Environmental Transmission Electron Microscopy Investigations of Ceria-Based Oxides for Solid Oxide Fuel Cell Anodes

January 2011 (has links)
abstract: The behavior of a solid oxide fuel cell (SOFC) cermet (ceramic-metal composite) anode under reaction conditions depends significantly on the structure, morphology and atomic scale interactions between the metal and the ceramic components. In situ environmental transmission electron microscope (ETEM) is an important tool which not only allows us to perform the basic nanoscale characterization of the anode materials, but also to observe in real-time, the dynamic changes in the anode material under near-reaction conditions. The earlier part of this dissertation is focused on the synthesis and characterization of Pr- and Gd-doped cerium oxide anode materials. A novel spray drying set-up was designed and constructed for preparing nanoparticles of these mixed-oxides and nickel oxide for anode fabrication. X-ray powder diffraction was used to investigate the crystal structure and lattice parameters of the synthesized materials. Particle size distribution, morphology and chemical composition were investigated using transmission electron microscope (TEM). The nanoparticles were found to possess pit-like defects of average size 2 nm after subjecting the spray-dried material to heat treatment at 700 °C for 2 h in air. A novel electron energy-loss spectroscopy (EELS) quantification technique for determining the Pr and Gd concentrations in the mixed oxides was developed. Nano-scale compositional heterogeneity was observed in these materials. The later part of the dissertation focuses mainly on in situ investigations of the anode materials under a H2 environment in the ETEM. Nano-scale changes in the stand-alone ceramic components of the cermet anode were first investigated. Particle size and composition of the individual nanoparticles of Pr-doped ceria (PDC) were found to affect their reducibility in H2 gas. Upon reduction, amorphization of the nanoparticles was observed and was linked to the presence of pit-like defects in the spray-dried material. Investigation of metal-ceramic interactions in the Ni-loaded PDC nanoparticles indicated a localized reduction of Ce in the vicinity of the Ni/PDC interface at 420 °C. Formation of a reduction zone around the interface was attributed to H spillover which was observed directly in the ETEM. Preliminary results on the fabrication of model SOFCs and in situ behavior of Ni/Gd-doped ceria anodes have been presented. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2011
2

Thermodynamique de surface et réactivité du nanoalliage CU-AU par microscopie électronique en transmission environnementale en condition gazeuse / Surface thermodynamics and reactivity of Cu-Au nanoalloy by environmental transmission electron microscopy under gaseous condition

Chmielewski, Adrian 11 December 2018 (has links)
Le nanoalliage cuivre-or (CuAu) pour la catalyse hétérogène fait l'objet d'un intérêt grandissant de la communauté scientifique. En effet, l'alliage de l'or, réputé être un élément stabilisateur, avec le cuivre, réputé très actif notamment vis-à-vis de l'oxygène, offre de très grandes possibilités, tant dans les réactions d'oxydation tel que l'oxydation du monoxyde de carbone, mais aussi dans les réactions d'hydrogénation, telle que l'hydrogénation sélective du butadiène. L'un des processus déterminant dans les réactions d'oxydation et d'hydrogénation est le processus d'adsorption et de dissociation des molécules d'O2 et de H2 par le catalyseur. Afin d'avoir une meilleure compréhension des processus mis en jeu, il est nécessaire d'identifier les sites actifs où a lieu l'adsorption et la dissociation éventuelle des molécules, mais aussi des mécanismes mis en jeu lors de ces processus. Mais aujourd'hui, il n'existe pas de consensus général, dans la communauté scientifique, concernant la localisation des sites actifs. C’est dans ce contexte que s’inscrit ce travail de thèse, mené au laboratoire Matériaux et Phénomènes Quantiques (MPQ) au sein de l'équipe Microscope électronique Avancée et NanoStructures (Me-ANS) dirigé par le professeur Christian Ricolleau. Les deux problématiques majeures auxquelles nous nous sommes intéressées sont (i) la stabilité structurale et morphologique des nanoparticules de Cu, Au et de Cu-Au dans le vide et en température et ce sur différents supports tels que le nitrure de silicium amorphe et le rutile-TiO2, (ii) la stabilité structurale et morphologique des nanoparticules de Cu, Au et de Cu-Au supportées sur rutile-TiO2, sous atmosphère de gaz oxydant (O2) et réducteur (H2). Les objectifs étant d'identifier les sites d'adsorption éventuels des molécules d'O2 et de H2 par les catalyseurs, et de mieux comprendre les mécanismes qui conduisent à l'évolution morphologique de ceux-ci en milieu réactif. / : Copper-gold nanoalloy (CuAu) for heterogeneous catalysis is of increasing interest in the scientific community. Indeed, the alloy of gold, known to be a stabilizing element, with copper, known to be very active with respect to oxygen particularly, shows interesting catalytic properties, in oxidation reactions such as oxidation of carbon monoxide, but also in hydrogenation reactions, such as the selective hydrogenation of butadiene. One of the rate determining step in oxidation and hydrogenation reactions is the process of adsorption and dissociation of O2 and H2 molecules by the catalyst. In order to have a better understanding of the processes involved, it is necessary to identify, the active sites where the eventual adsorption and dissociation of the molecules takes place, but also the mechanisms involved during these processes. However today, there is no general consensus in the scientific community towards the location of the active sites. It is in this context that this thesis work, conducted in the laboratory Materials and Quantum Phenomena (MPQ) within the team Advanced Electron Microscope and NanoStructures (Me-ANS) led by Professor Christian Ricolleau. The two major issues we have been interested in are (i) the structural and morphological stability, in vacuum and with temperature, of Cu, Au and Cu-Au nanoparticles deposited on different substrates such as amorphous silicon nitride and rutile -TiO2 nanorods, (ii) the structural and morphological stability of Cu, Au and Cu-Au nanoparticles supported on rutile-TiO2 under oxidizing (O2) and reducing (H2) atmospheres. The main goals being to identify the possible adsorption sites of the O2 and H2 molecules by the catalysts, and to better understand the mechanisms that lead to the morphological evolution of these NPs in a reactive medium.
3

Influence de l'atmosphère réactive sur la stabilité structurale de catalyseurs Pt1 supporté et performances associées en oxydation de CO et photogénération d'hydrogène / Influence of the reactive atmosphere on the structural stability of supported Pt1 catalysts and related performance in CO oxidation and hydrogen photogeneration

Dessal, Caroline 14 December 2018 (has links)
Ce travail de thèse a consisté en l’étude de catalyseurs ultradispersés, composés de clusters nanométriques ou d’atomes isolés (single-atom catalysts, SACs) de métal, une nouvelle classe de catalyseurs faisant actuellement l’objet d’un engouement mondial. Les systèmes Pt/?-Al2O3 et Pt/TiO2 ont été préparés, caractérisés et testés en oxydation de CO et photogénération d’hydrogène, respectivement. Plusieurs méthodes d’imprégnation et de traitement thermique ont été comparées, notamment grâce à l’analyse de la dispersion du platine par microscopie électronique en transmission à balayage (STEM). Pour la préparation de SACs, notre choix s’est finalement porté sur l’imprégnation à humidité naissante d’une faible charge de précurseur Pt(NH3)4(NO3)2, suivie d’une calcination à l’air. L’étude des performances catalytiques et de l’évolution structurale des catalyseurs au cours des réactions a permis de montrer que les atomes isolés (cations) de platine étaient moins actifs que les clusters (réduits) pour les deux systèmes catalytiques étudiés. Dans le cas de Pt/?-Al2O3, des suivis par spectroscopie d’absorption X (XAS) operando en rayonnement synchrotron, spectroscopie infrarouge par réflexion diffuse (DRIFTS) operando et microscopie environnementale (E-STEM) ont montré la formation et la déstabilisation des SACs, cette dernière étant toutefois moindre en conditions oxydantes. En effet, l’oxygène stabilise le platine isolé via la formation de plusieurs liaisons Pt-O-Al comme montré par modélisation DFT, alors que la présence d’un composé réducteur (CO, H2) conduit à la formation de clusters, mobiles sur leur support. Ce travail met en évidence les limites possibles concernant la stabilisation et la mise en œuvre des SACs dans des réactions catalytiques impliquant des conditions réductrices / This PhD work is focused on the study of ultradispersed catalysts, composed of nanometer-sized clusters or isolated atoms (single-atom catalysts, SACs) of metal, a new class of catalysts which are currently the object of worldwide interest. The Pt/?-Al2O3 and Pt/TiO2 systems were prepared, characterized and evaluated for CO oxidation and hydrogen photogeneration, respectively.Several methods of impregnation and thermal treatment were compared, in particular through platinum dispersion analysis using scanning electron microscopy (STEM). For the preparation of SACs, our choice finally turned to the incipient wetness impregnation of Pt(NH3)4(NO3)2 precursor at low loading, followed by calcination in air.For the two catalytic systems of interest, the study of the performances and the structural evolution of the catalysts during the reactions shows that isolated Pt atoms (cations) are less active than their (reduced) cluster counterparts.In the case of Pt/?-Al2O3, operando X-ray absorption spectroscopy (XAS) using synchrotron radiation, operando diffuse reflectance infrared spectroscopy (DRIFTS), and environmental microscopy (E-STEM) allowed us to monitor the SAC formation and destabilization, the latter being however limited in oxidizing conditions. Indeed, the presence of oxygen stabilizes single Pt atoms via the formation of several Pt-O-Al bonds as shown by DFT modeling, whereas the presence of a reducing compound (CO, H2) leads to the formation of Pt clusters, mobile on their support.This work highlights the possible limitations in the stabilization and implementation of SACs for catalytic reactions involving reducing conditions
4

In situ studies on palladium/rutile titanium dioxide exposed to low pressure hydrogen gas environments

Bongers, Marian David 05 February 2018 (has links)
No description available.

Page generated in 0.0144 seconds