• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance Evaluation of Space-Time Coding on an Airborne Test Platform

Temple, Kip 10 1900 (has links)
ITC/USA 2014 Conference Proceedings / The Fiftieth Annual International Telemetering Conference and Technical Exhibition / October 20-23, 2014 / Town and Country Resort & Convention Center, San Diego, CA / Typical airborne test platforms use multiple telemetry transmit antennas in a top and bottom configuration in order to mitigate signal shadowing during maneuvers on high dynamic platforms. While mitigating one problem, this also creates a co-channel interference problem as the same signal, time delayed with differing amplitude, is sent to both antennas. Space-Time Coding (STC) was developed with the intention of mitigating this co-channel interference problem, also known as the "two antenna problem". Lab testing and preliminary flight testing of developmental and pre-production hardware has been completed and documented. This is the first test dedicated to assessing the performance of a production STC system in a real-world test environment. This paper will briefly describe lab testing that preceded the flight testing, describes the airborne and ground station configurations used during the flight test, and provides detailed results of the performance of the space time coded telemetry link as compared against a reference telemetry link.
2

ARTM CPM Receiver/Demodulator Performance: An Update

Temple, Kip 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / Since the waveform was first developed by the Advanced Range Telemetry Program (ARTM) and adopted by the Range Commanders Council Telemetry Group (RCC/TG), receiver/demodulators for the ARTM Continuous Phase Modulation (CPM) waveform have undergone continued development by several hardware vendors to boost performance in terms of phase noise, detection performance, and resynchronization time. These same results were initially presented at the International Telemetry Conference (ITC) 2003 when hardware first became available supporting this waveform, at the time called ARTM Tier II. This paper reexamines the current state of the art performance of ARTM CPM receiver/demodulators available in the marketplace today.
3

Performance Evaluation of Low Density Parity Check Forward Error Correction in an Aeronautical Flight Environment

Temple, Kip 10 1900 (has links)
ITC/USA 2014 Conference Proceedings / The Fiftieth Annual International Telemetering Conference and Technical Exhibition / October 20-23, 2014 / Town and Country Resort & Convention Center, San Diego, CA / In some flight test scenarios the telemetry link is noise limited at long slant ranges or during signal fade events caused by antenna pattern nulls. In these situations, a mitigation technique such as forward error correction (FEC) can add several decibels to the link margin. The particular FEC code discussed in this paper is a variant of a low-density parity check (LDPC) code and is coupled with SOQPSK modulation in the hardware tested. This paper will briefly cover lab testing of the flight-ready hardware then present flight test results comparing a baseline uncoded telemetry link with a LDPC-coded telemetry link. This is the first known test dedicated to this specific FEC code in a real-world test environment with flight profile tailored to assess the viability of an LDPC-coded telemetry link.

Page generated in 0.0258 seconds