• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 15
  • 12
  • 2
  • 2
  • Tagged with
  • 114
  • 34
  • 32
  • 22
  • 20
  • 19
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Definition of soil water dynamics by combining hydrometry and geophysics in a hillslope transect in the KNP.

January 2006 (has links)
The budgeting of water fluxes in the soil is an extremely complex problem, and is compounded by subsurface controls and environmental forces which modify the soil water dynamics. Of the controlling factors, the underlying geology and the soil media are vital components and are often misinterpreted. The geology and soil media components have been neglected mostly because of the difficulty in monitoring the dominant processes that are linked to the water balance in the subsurface. Until recently, hydrometry has been the dominant method of measuring and monitoring the subsurface water balance. Hydrometric measurements have included water content measurement by Time Domain Reflectometry (TDR), soil water potential measurements through tensiometry and groundwater water level monitoring. Hydrometry is still the preferred method of monitoring soil water dynamics, but measurements are generally localised and lateral accumulations and fluxes of water are difficult to interpret. Using geophysical methods and instrumentation to define soil water dynamics could have numerous advantages over conventional hydrometric methods. Among the geophysical techniques dedicated to image the near surface, Electrical Resistivity Tomography (ERT) surveying has been increasingly used for environmental, engineering and geological purposes during the last decade. The aim of this study is to determine if ERT observations could yield the accuracy required to define vertical and lateral soil water dynamics. The ERT instrumentation uses an electrical current that is inserted into the subsurface through various electrode arrangements and a resulting resistance is determined at the take-out electrodes. With the aid of a modelling package these resistance values are reproduced into a pseudosection of underlying resistivity distribution which is influenced by the moisture conditions of the subsurface medium. This geophysical method is primarily used for geological studies but by doing repeated surveys with the same electrode positioning, moisture fluctuation monitoring could be realised. Use of the ERT technique is at the forefront of soil water dynamics monitoring. The main objective of this study is to propose that the ERT instrumentation could be a more efficient and more informative method of studying soil water dynamics than the traditional soil water dynamics monitoring equipment, particularly to define lateral fluxes and accumulation of subsurface water. The study site is a well instrumented transect in the Nkuhlu Exclosures in the Kruger National Park, South Africa, where ongoing soil water dynamics are monitored. The project aims to compare the ERT data to fiR data on a daily basis, over a period of three weeks, during the rain season, monitoring event based wetting and the subsequent drying phases of the soils in a 2-dimensional section. The project and its fmdings are shown to be valuable to the hydrological interpretation of the subsurface water balance. The application is shown to be particularly important to ecohydrology, in the monitoring of soil water dynamics in a 2-dimensional transect and understanding how the natural cycles of water distribution and plant uptake are linked together. The study demonstrates that ERT can be used to observe changes in the water storage and lateral fluxes within a transect which supports varying vegetation and ecologies. The linking of water fluxes in the hydrology cycle to uptakes and controls in the ecosystem has been developed into the research focus known as ecohydrology The use of the ERT instrument can only benefit this research focus in the future. The study demonstrates that ERT instrumentation can be used to provide valuable understanding of subsurface water dynamics and in turn the effects on ecohydrology. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
82

Transpiration as the leak in the carbon factory : a model of self-optimising vegetation

Schymanski, Stanislaus Josef January 2007 (has links)
[Truncated abstract] In the most common (hydrological) viewpoint, vegetation is a
83

How Will Hydrologic Change Alter Riparian Plant Communities of the Arid and Semi-Arid Southwest? The Problem Approached from Two Perspectives

January 2011 (has links)
abstract: Climate change has the potential to affect vegetation via changes in temperature and precipitation. In the semi-arid southwestern United States, heightened temperatures will likely lead to accelerated groundwater pumping to meet human needs, and altered storm patterns may lead to changes in flood regimes. All of these hydrologic changes have the potential to alter riparian vegetation. This research, consisting of two papers, examines relationships between hydrology and riparian vegetation along the Verde River in central Arizona, from applied and theoretical perspectives. One paper investigates how dominance of tree and shrub species and cover of certain functional groups change along hydrologic gradients. The other paper uses the Verde River flora along with that river's flood and moisture gradients to answer the question of whether functional groups can be defined universally. Drying of the Verde River would lead to a shift from cottonwood-willow streamside forest to more drought adapted desert willow or saltcedar, a decline in streamside marsh species, and decreased species richness. Effects drying will have on one dominant forest tree, velvet ash, is unclear. Increase in the frequency of large floods would potentially increase forest density and decrease average tree age and diameter. Correlations between functional traits of Verde River plants and hydrologic gradients are consistent with "leaf economics," or the axis of resource capture, use, and release, as the primary strategic trade-off for plants. This corresponds to the competitor-stress tolerator gradient in Grime's life history strategy theory. Plant height was also a strong indicator of hydrologic condition, though it is not clear from the literature if plant height is independent enough of leaf characteristics on a global scale to be considered a second axis. Though the ecohydrologic relationships are approached from different perspectives, the results of the two papers are consistent if interpreted together. The species that are currently dominant in the near-channel Verde River floodplain are tall, broad-leaf trees, and the species that are predicted to become more dominant in the case of the river drying are shorter trees or shrubs with smaller leaves. These results have implications for river and water management, as well as theoretical ecology. / Dissertation/Thesis / M.S. Plant Biology 2011
84

Hillslope Scale Hydrologic Spatial Patterns in a Patchy Ponderosa Pine Landscape: Insights from Distributed Hydrologic Modeling

January 2012 (has links)
abstract: Ponderosa pine forests are a dominant land cover type in semiarid montane areas. Water supplies in major rivers of the southwestern United States depend on ponderosa pine forests since these ecosystems: (1) receive a significant amount of rainfall and snowfall, (2) intercept precipitation and transpire water, and (3) indirectly influence runoff by impacting the infiltration rate. However, the hydrologic patterns in these ecosystems with strong seasonality are poorly understood. In this study, we used a distributed hydrologic model evaluated against field observations to improve our understandings on spatial controls of hydrologic patterns, appropriate model resolution to simulate ponderosa pine ecosystems and hydrologic responses in the context of contrasting winter to summer transitions. Our modeling effort is focused on the hydrologic responses during the North American Monsoon (NAM), winter and spring periods. In Chapter 2, we utilized a distributed model explore the spatial controls on simulated soil moisture and temporal evolution of these spatial controls as a function of seasonal wetness. Our findings indicate that vegetation and topographic curvature are spatial controls. Vegetation controlled patterns during dry summer period switch to fine-scale terrain curvature controlled patterns during persistently wet NAM period. Thus, a climatic threshold involving rainfall and weather conditions during the NAM is identified when high rainfall amount (such as 146 mm rain in August, 1997) activates lateral flux of soil moisture and frequent cloudy cover (such as 42% cloud cover during daytime of August, 1997) lowers evapotranspiration. In Chapter 3, we investigate the impacts of model coarsening on simulated soil moisture patterns during the NAM. Results indicate that model aggregation quickly eradicates curvature features and its spatial control on hydrologic patterns. A threshold resolution of ~10% of the original terrain is identified through analyses of homogeneity indices, correlation coefficients and spatial errors beyond which the fidelity of simulated soil moisture is no longer reliable. Based on spatial error analyses, we detected that the concave areas (~28% of hillslope) are very sensitive to model coarsening and root mean square error (RMSE) is higher than residual soil moisture content (~0.07 m3/m3 soil moisture) for concave areas. Thus, concave areas need to be sampled for capturing appropriate hillslope response for this hillslope. In Chapter 4, we investigate the impacts of contrasting winter to summer transitions on hillslope hydrologic responses. We use a distributed hydrologic model to generate a consistent set of high-resolution hydrologic estimates. Our model is evaluated against the snow depth, soil moisture and runoff observations over two water years yielding reliable spatial distributions during the winter to summer transitions. We find that a wet winter followed by a dry summer promotes evapotranspiration losses (spatial averaged ~193 mm spring ET and ~ 600 mm summer ET) that dry the soil and disconnect lateral fluxes in the forested hillslope, leading to soil moisture patterns resembling vegetation patches. Conversely, a dry winter prior to a wet summer results in soil moisture increases due to high rainfall and low ET during the spring (spatially averaged 78 mm ET and 232 mm rainfall) and summer period (spatially averaged 147 mm ET and 247 mm rainfall) which promote lateral connectivity and soil moisture patterns with the signature of terrain curvature. An opposing temporal switch between infiltration and saturation excess runoff is also identified. These contrasting responses indicate that the inverse relation has significant consequences on hillslope water availability and its spatial distribution with implications on other ecohydrological processes including vegetation phenology, groundwater recharge and geomorphic development. Results from this work have implications on the design of hillslope experiments, the resolution of hillslope scale models, and the prediction of hydrologic conditions in ponderosa pine ecosystems. In addition, our findings can be used to select future hillslope sites for detailed ecohydrological investigations. Further, the proposed methodology can be useful for predicting responses to climate and land cover changes that are anticipated for the southwestern United States. / Dissertation/Thesis / Ph.D. Geological Sciences 2012
85

Deep Percolation in Arid Piedmont Watersheds and Its Sensitivity to Ecosystem Change

January 2017 (has links)
abstract: Population growth within drylands is occurring faster than growth in any other ecologic zone, putting pressure on already stressed water resources. Because the availability of surface water supplies in drylands tends to be highly variable, many of these populations rely on groundwater. A critical process contributing to groundwater recharge is the interaction between ephemeral channels and groundwater aquifers. Generally, it has been found that ephemeral channels contribute to groundwater recharge when streamflow infiltrates into the sandy bottoms of channels. This process has traditionally been studied in channels that drain large areas (10s to 100s km2). In this dissertation, I study the interactions between surface water and groundwater via ephemeral channels in a first-order watershed located on an arid piedmont slope within the Jornada Experimental Range (JER) in the Chihuahuan Desert. To achieve this, I utilize a combination of high-resolution observations and computer simulations using a modified hydrologic model to quantify groundwater recharge and shed light on the geomorphic and ecologic processes that affect the rate of recharge. Observational results indicate that runoff generated within the piedmont slope contributes significantly to deep percolation. During the short-term (6 yr) study period, we estimated 385 mm of total percolation, 62 mm/year, or a ratio of percolation to rainfall of 0.25. Based on the instrument network, we identified that percolation occurs inside channel areas when these receive overland sheetflow from hillslopes. By utilizing a modified version of the hydrologic model, TIN-based Real-time Integrated Basin Simulator (tRIBS), that was calibrated and validated using the observational dataset, I quantified the effects of changing watershed properties on groundwater recharge. Distributed model simulations quantify how deep percolation is produced during the streamflow generation process, and indicate that it plays a significant role in moderating the production of streamflow. Sensitivity analyses reveal that hillslope properties control the amount of rainfall necessary to initiate percolation while channel properties control the partitioning of hillslope runoff into streamflow and deep percolation. Synthetic vegetation experiments show that woody plant encroachment leads to increases in both deep percolation and streamflow. Further woody plant encroachment may result in the unexpected enhancement of dryland aquifer sustainability. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2017
86

Dinâmica ecohidrológica de rios urbanos no contexto de gestão de riscos de desastres / Ecohydrological dynamics of urban rivers in the context of disaster risk management

Gustavo Bueno Romero 06 May 2016 (has links)
A expansão do tecido urbano e o adensamento das cidades têm um impacto negativo sobre os recursos hídricos, tanto na quantidade quanto na qualidade das águas no ambiente, pois aumenta as cargas de poluentes no meio e altera o ciclo hidrológico natural, criando riscos à população. É possível reduzir tais riscos através do diagnóstico, planejamento e gestão adequada das áreas de risco para a proteção civil e das comunidades. A abordagem ecohidrológica, que considera a relação funcional entre hidrologia, sistemas aquáticos e sua biota na escala de bacia hidrográfica, incorporando aspectos quantitativos e qualitativos da água em uma visão de interdependência entre Ecologia e Hidrologia, permite o diagnóstico, planejamento e manejo adequado dos cursos hídricos em benefício tanto dos humanos quando dos demais seres vivos. Este trabalho busca investigar a dinâmica ecohidrológica no espaço e no tempo da Bacia do Rio Monjolinho, localizada no Município de São Carlos (SP), no contexto de gestão de riscos de desastres hidrológicos. Os processos quantitativos são investigados por meio de simulações com o SWMM (Storm Water Management Model) e os dados de simulação são utilizados, por vez, na determinação do IP (Índice de Perigo) de pontos estratégicos da bacia hidrográfica e também das áreas com maior risco de inundação. Com relação à qualidade, onze variáveis clássicas de qualidade dágua são determinadas experimentalmente em 15 pontos da bacia a fim de caracterizar a dinâmica das cargas de poluentes, permitindo desta maneira a avaliação do risco biológico na bacia. Os resultados quali-quantitativos mostram que os vales dos rios oferecem riscos tanto devido às inundações quanto devido ao alto risco de contaminação. / The urban tissue expansion and the urban area densification have a negative impact on water resources, in terms of quality and quantity of available water, since it increases the polutant load at the same time it changes the natural hydrological cycle, exposing population to risk. It is possible to reduce the risks by means of assessment, planning and correct management of risk areas in order to protect the communities. The ecohydrology, which takes into account the functional relationship between hydrology, aquatic systems and biota in watershed scale, considering quali-quantitative aspects and their interdependecies, enable us to assess, plan and manage risks in an advantageous way for humans and living beings as well. This work investigates the ecohydrology dynamics in space and time of Rio Monjolinho basin, located within the municipality of São Carlos (SP), Brazil, in the context of disaster risk management. The quantitative aspects are investigated using the SWMM (Storm Water Management Model) simulation model, and the simulation data generated are used to calculate the Risk Index (RI) and to map the flooding risk areas in the basin. Eleven classic water quality variables are experimentaly determined to assess the polutant load dynamics and its distribution in the sub-basins, enabling us to assess the biologic risks. The results show that some areas in the catchment are not just flood risk areas but also areas of high biological risk of contamination.
87

Temporal and spatial structures of denitrification in crystalline aquifers / Dénitrification dans les aquifères cristallins : variations temporelles et spatiales

Kolbe, Tamara 04 July 2017 (has links)
La contamination des aquifères de proche subsurface par les intrants d'origine agricole (nitrates) est un problème mondial.L'utilisation excessive d'engrais depuis plusieurs décennies a impacté la qualité des masses d'eau souterraines et soulève des enjeux pour la santé humaine comme pour celle des écosystèmes. Les nitrates dans les aquifères peuvent être réduits en diazote gazeux par l'activité microbienne hétérotrophique (la biomasse microbienne obtenant l'énergie nécessaire à ce processus via le carbone organique issu de la surface) et/ou par l'activité autotrophique (la biomasse microbienne obtenant cette fois ci son énergie depuis une source proche, lithologique). Les taux de dénitrification sont très variables spatialement, et sont régulés par l'interaction entre la structure des flux d'eau souterrains avec l'activité biogéochimique. Localiser l'activité biogéochimique dans les aquifères est difficilement réalisable à l'échelle des bassins versants, mais paraît crucial pour la gestion des masses d'eau souterraines. Bien que les processus de l'activité microbienne ne puissent pas être entièrement résolus à l'échelle locale, ce manuscrit de thèse propose une caractérisation des taux de dénitrification à l'échelle du bassin versant, basée sur l'analyse de données et sur une approche de modélisation intégrée. Cette thèse propose d'utiliser de manière extensive des traceurs conservatifs et réactifs associés aux flux d'eau souterraine et des modèles de transport afin d'identifier les contrôles géologiques et biogéochimiques sur les capacités de dénitrification dans les aquifères. Cette méthodologie a été appliquée à un aquifère libre cristallin de 76 km² situé en Bretagne. A partir des concentrations en CFC-12, O2, NO3- et N2 dissous mesurées dans 16 puits, il a été possible de reconstituer les chroniques d'apports de nitrate dans la zone saturée et de définir les variations spatio-temporelles de la dénitrification. Il est prouvé ici que la dénitrification est en premier lieu contrôlée par la position des donneurs d'électron. Ce travail propose un cadre d'interprétation général sur la base de l'utilisation combinée et complémentaire des traceurs et sur la modélisation semi-explicite pour estimer à l'échelle régionale les capacités de dénitrification et les stocks de nitrates dans les aquifères. / Unconfined shallow aquifers in agricultural areas are contaminated by nitrates worldwide. Excessive fertilization over the last decades has affected groundwater quality as well as human and ecosystem wellbeing. Nitrate in groundwater can be microbially reduced to dinitrogen gas by heterotrophic (microbes obtaining their energy from surface-derived organic carbon) and autotrophic (microbes obtaining their energy from a lithological source) processes. However, denitrification rates are highly spatially variable, following involved interactions between groundwater flow structures and biogeochemical activity. The location of biogeochemical activity in the aquifer is difficult to access at the catchment scale, but of vast importance to gain predictive capabilities for groundwater management. Even though microbial processes cannot be resolved at the local scale, this dissertation proposes a catchment scale characterization of denitrification rates based on an integrated model- and data-driven approach. The dissertation proposes an extensive use of conservative and reactive tracers combined with groundwater flow and transport models to identify the geological and biogeochemical controls on aquifer denitrification capacities. The methodology is applied to a crystalline unconfined aquifer of 76 km2 size in Brittany, France. Based on CFC-12, O2, NO3-, and dissolved N2 concentrations measured in 16 wells, it is possible to reconstruct historical nitrate inputs to the saturated zone and to define spatiotemporal denitrification activity. It is shown that denitrification is primarily controlled by the location of electron donors. The dissertation proposes a general interpretation framework based on tracer information combined with complementary semi-explicit lumped parameter models to assess regional denitrification capacities and nitrate legacy.
88

Vers une compréhension du fonctionnement carboné et écohydrologique des tilleuls argentés (Tilia tomentosa Moench) plantés en alignement à Paris / Towards an understanding of the carbon and ecohydrological functionning of street silver lindens (Tilia tomentosa Moench) planted in Paris

David, Ambre 14 December 2016 (has links)
La présence d’arbres en milieu urbain, où vit plus de la moitié de la population mondiale, participe à l’amélioration de la qualité́ de vie des citadins par les services écosystémiques qu’ils nous rendent. Cependant, de nombreuses études ont mis en évidence l’importante mortalité́ et la faible espérance de vie des arbres en ville du fait des stress hydriques. Nos résultats dendroclimatiques ont pu montrer qu’en comparaison avec les arbres de parc urbain ou d’arboretum, les arbres de rue ont généralement une croissance plus faible. Les précipitations en automne et au printemps semblent jouer un rôle prépondérant pour la croissance annuelle des tilleuls argentés urbains. Nos résultats sur le niveau des réserves (lipides et glucides) montrent que les arbres en condition de stress hydrique pourraient activement réguler leurs réserves de C selon une stratégie de survie à long terme. Les jeunes tilleuls argentés, quant à eux, semblent privilégier l’allocation du C dans la croissance radiale. Nos résultats sur la signature isotopique en 18O et en 2H des sources d’eau en ville, indiquent enfin que les arbres en rue semblent dépendre principalement de l'eau du sol très superficiel (couche 0-20 cm). Cette eau est un mélange d'eau de pluie et d'eau non potable plus ou moins évaporées, bien que ces arbres ne soient soumis à aucune stratégie d'irrigation particulière à Paris. Les arbres les plus matures en rue semblent disposer d’une plus faible disponibilité́ en eau due à la plus forte évaporation des sols en surface. En conclusion, cette étude appelle à (i) la protection des sols nus d’une évaporation excessive, et (ii) une irrigation en harmonie avec la phénologie. / The presence of trees in urban areas, where more than half of the world's population lives, contributes to improving the quality of city through ecosystem services they provide. However, many studies have shown that urban trees face high mortality rates and low life expectancy due to water stress. Dendroclimatic results have showed that, in comparison with the urban park or arboretum trees, street trees generally have lower annual growth rate. Precipitation in autumn and spring seem to play the main role in the annual growth of urban silver lindens. Reserve measurements (lipids and carbohydrates) show that trees under water stress could priorize C reserves as a long-term survival strategy. On the contrary, younger silver lindens seem to favor the allocation of C in the radial growth. Our results on the isotope signature in 18O and 2H of water sources in the city, indicated that street trees seem to depend mainly on soil water in upper layers (0-20 cm layer). This water is a mixture, more or less evaporated, from precipitation and non potable water, although street trees are not subject to any particular irrigation strategy in Paris. Larger street trees seem to have lower water availability due to increase of surface soils evaporation. To conclude, This study would rethink current irrigation strategies in the city, focusing on (i) the protection of bare soil from excessive evaporation, and (ii) an irrigation in harmony with the phenology of species.
89

Průzkum a hodnocení ekologického stavu vodních toků při zohlednění evropských standardů. Aplikace v modelovém povodí Rolavy. / Ecological survey and assessment of streams within European Standards. Application in the Rolava River basin.

Beranová, Zuzana January 2011 (has links)
This thesis deals with implementation of Water Framework Directive (2000/60/EC) in the Czech Republic. The study area was the Rolava River basin in the Ore Mountains (northwest of Bohemia). The ecological status assessment was applied to both - the main stream and relevant tributaries. Available hydrobiological and hydrochemical data enhanced with the field hydromorphological survey using the Hydroecological monitoring (HEM, Langhammer, 2007) were applied in this thesis. Results of the field survey were compared with two ecomorphological methods: LAWA-FS (LAWA, 2000) and EcoRivHab (Matoušková, 2003, 2007). As a final result, it was found out the water body on upper course of the Rolava River achieved good ecological status. Water body on lower course of the Rolava River and of the tributary the Nejdecký Brook were classified as not achieving good ecological status. The Rolava catchment has very specific conditions and huge potential to achieve the good status in the future.
90

Peatland Carbon Accumulation Following Wildfire on the Boreal Plains: Implications for Peatland Reclamation and Wildfire Management

Ingram, Rebekah January 2018 (has links)
Peatlands in the sub-humid Boreal Plains of Alberta exist at the limit of their climatic tolerance and are vulnerable to wildfire. This is especially true at the interface between the peatland and forestland (margins) due to water table fluctuation resulting in high peat bulk density and low moisture content during dry periods in some peatland systems. Deep burning at the margins may reduce a peatland's ability to recover to its previous state, leading to a reduction in area and/or collapse following fire, and bringing into question the long-term stability of Boreal Plains peatlands on the landscape under current and future climate predictions. Previous research has identified small peatlands located at a mid-topographic position on coarse sediments as hotspots for deep burning, as these peatlands are not regularly connected to regional groundwater flow. The ability of these peatland systems to recover lost carbon from both the interior and margin within the fire return interval, however, has not yet been investigated. This thesis further examines the relationship between surficial sediment assemblages and the impact of wildfire on overlying peatlands through assessment of organic soil carbon accumulation following wildfire across the Boreal Plains landscape. Peatland organic soil recovery along a chronosequence was assessed in the interior and margin of 26 ombrotrophic bogs located at various positions on the post-glaciation landscape of Northern Alberta using estimates of organic soil carbon accumulation calculated through loss on ignition of peat above the uppermost charcoal layer in peat cores from each site, as well as characterization of peat properties along a transect from the adjacent forestland into the peatland interior. Soil organic carbon accumulation with time since fire was greater in studied peatland interiors than margins. Underlying sediments were found to have little effect on total soil organic carbon accumulation in the interior and margins of the studied peatlands, indicating that organic soil carbon accumulation rates following wildfire estimated in this study can be extended to ombrotrophic bogs across the Boreal Plains landscape. Though total soil organic carbon accumulation following wildfire does not appear to be influenced by hydrogeological setting, the ability of a peatland to recover the quantity of carbon lost within the fire return interval will be dependent on the amount of carbon which was released through smouldering, which is influenced by hydrogeological setting for peatland margins. Based on published measurements of organic soil carbon loss during wildfire and organic soil carbon accumulation rates estimated in this thesis, peatlands located at topographic lows on coarse grained glaciofluvial outwash sediments or on low-relief, fine grained sediment deposits from glaciolacustrine or subglacial paleoenvironments are predicted to be resilient to wildfire on the Boreal Plains landscape. Peatlands which experience severe smouldering at the margins, such as ephemerally perched systems on glaciofluvial outwash sediments, will likely undergo permanent loss of legacy carbon stores. The resilience of peatlands which are perched above regional groundwater on glaciofluvial outwash or stagnant ice moraine deposits is unknown at this time; further investigation into water table dynamics, margin peat properties, and smouldering depths in these systems is required. Identification of peatland systems which are at risk of permanent carbon loss at the margins and those which are most resilient to wildfire in this thesis can be applied to wildfire management strategies and the design of peatland systems for reclamation of oil sands leases. The stability of natural and created peatlands through time on a landscape where wildfire is frequent is an important consideration in terms of both lasting ecosystem services and the potential risk to fire suppression and community safety that vulnerable systems pose. / Thesis / Master of Science (MSc)

Page generated in 0.0468 seconds