• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 4
  • 3
  • 1
  • Tagged with
  • 81
  • 81
  • 34
  • 24
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Shrub encroachment in arctic and alpine tundra: Patterns of expansion and ecosystem impacts.

Myers-Smith, Isla H. Unknown Date
No description available.
22

The Impact of Edge Effects & Matrix Restoration on Dung Beetle Community Structure & Ecosystem Function

Barnes, Andrew David January 2011 (has links)
Land-use change has become a force of global importance and has gained status as the most important driver of ecosystem degradation. The resulting creation of habitat edges has pervasive impacts on the distribution and persistence of species in forest ecosystems. Responses of species to edge effects can be highly dependent on ‘response’ traits, which may in turn co-vary with ‘effect’ traits that determine rates of ecosystem functioning. Therefore, non-random loss of species due to traits conferring higher susceptibility to extinction may also result in the loss of functionally-important species across a habitat edge gradient. Likewise, response and effect traits may be important in determining reassembly of communities in regenerating habitats, which may provide insight into potential scenarios of functional responses to restoration efforts. To test for potential off-site effects of adjacent matrix habitat restoration on dung beetle communities, I compared dung beetle community structure and species trait composition across Afromontane forest edges adjacent to degraded and regenerating matrix habitat at Ngel Nyaki forest reserve in Nigeria. I also measured dung removal rates across habitat edge gradients to investigate the relative off-site impacts of matrix restoration on dung beetle-mediated ecosystem processes. I found significant effects of adjacent matrix condition on edge response functions in dung beetle abundance, species distributions, and trait composition. Beetle abundances were markedly higher in forests adjacent to regenerating matrix, whereas the largest differences in trait composition were found between degraded and regenerating matrix habitat, indicating the presence of ecological filtering processes in these areas. Furthermore, I found that species traits determined community structural responses to environmental change and this had strong flow-on effects to rates of dung removal. Shifts in trait distributions explained dung removal rates above and beyond total beetle mass, suggesting that neutral processes alone could not explain functional efficiency. In particular, habitat regeneration resulted in the assembly of communities with high total beetle mass and on-average smaller beetles, which was optimal for functional efficiency. In conclusion, the restoration of adjacent matrix habitat was shown to effectively mitigate edge effects on dung beetle community structure resulting in the re-establishment of important associated ecosystem processes.
23

Impacts of sedimentation on the structure and functioning of agricultural stream communities

Burdon, Francis John January 2013 (has links)
The excessive deposition of fine inorganic sediment (<2 mm) is a major pathway by which agricultural land uses exert pressure on stream ecosystems. However, less well understood are the underlying mechanisms driving threshold biotic responses and the ecological consequences of community changes to sedimentation. Reviewing the literature, I found that sedimentation can affect algal and detrital pathways, and invertebrate community composition may show abrupt shifts with increased sediment. Moreover, functional changes to communities potentially leads to simpler food webs, with altered interactions and decreased ecosystem function. After identifying these knowledge gaps, I conducted survey and experimental research using agricultural streams on the Canterbury Plains of New Zealand’s South Island. Results from my survey of 30 streams along a sedimentation gradient showed that pollution-sensitive invertebrates (% EPT; Ephemeroptera, Plecoptera, Trichoptera) demonstrated threshold responses to sediment that varied with spatial scale, and change-point analysis indicated marked declines beyond 20% fine sediment covering streambed reaches. Structural equation modeling indicated that decreased habitat availability was a key mechanism contributing to these changes. To better understand the functional consequences of altered community structure, I investigated food webs in 12 streams along the gradient. The results showed a compression of community trophic niche space, suggesting that in particular, primary consumers became trophically more equivalent. The simplification of stream food webs with increasing sediment appeared to be the result of functional changes to invertebrate communities, with fewer specialised consumers, and shifts in the availability of basal resources. Using field and laboratory experiments investigating litter breakdown and invertebrate feeding, I found that the net consequence of functionally less diverse stream communities with increased sediment was impaired ecosystem function, demonstrated by a reduction in litter breakdown rates. The reduction of detrital resource availability through burial by sediment in laboratory mesocosm experiments strongly influenced detrital consumption rates, thus leading to reduced growth and survival of detritivorous caddisflies. The survey and experimental results support my postulate that sediment deposition causes environmental stress by degrading benthic habitat and making associated food resources (e.g., periphyton and leaves) less available. Overall, my results have provided new insights into sediment impacts on stream communities and have furthered our understanding of how these changes affect the structure and functioning of stream ecosystems.
24

The role of vegetation in characterising landscape function on rehabilitating gold tailings / A.S.H. Haagner

Haagner, Adrian Sigmund Harold January 2008 (has links)
Gold mine waste poses a significant challenge for rehabilitation practitioners and can negatively impact on soil, air, surface water and groundwater quality. This, in turn, can affect the environmental quality of humans and other biota in nearby settlements and surrounding ecosystems. All mines are required to have a plan in place to impede or mitigate these environmental impacts and to ensure that all legislation is complied with to apply for closure. Site closure is the eventual goal of all mine residue complexes, as it is the stage at which a company becomes released from all legal and financial liability. The South African legislation is comprehensive and essentially requires that all latent and residual environmental impacts are addressed and that an end land-use designation is put in place that conforms to the principles of sustainable development. The Chemwes Tailings Storage Facility complex near Stilfontein was monitored to provide a strategic assessment of the state of the rehabilitation, and to provide recommendations for the successful remediation of problem sites. A combination of vegetation sampling, landscape function assessments and substrate chemical analyses were conducted to gain a predictive understanding of rehabilitation progress. The monitoring was conducted over two years across a chronosequence of rehabilitating sites from tailings dam slopes and an adjacent spillage site. An undisturbed grassland and a starter-wall served as reference sites. The data were first analysed independently and then by making use of multivariate data ordinations. This allowed for holistic investigations of the relationships between sites, substrate chemistry, vegetation composition and landscape function. The results showed that the tailings dams had a distinctly different suite of vegetation from the reference sites, but had no statistically significant differences in composition across the rehabilitating chronosequence. There were positive correlations between rehabilitation site age and landscape function indices, suggesting that some aspects of ecosystem development were occurring over time. In some sites, deterioration in the substrate quality as a growth medium was observed with increases in acidity and salinity. This was most likely caused by pyrite oxidation in the tailings and the high concentrations of free salts. The increasing acidity and salinity resulted in vegetation senescence and declines in landscape function. However, those sites that possessed higher landscape function appeared to have the ecosystem processes in place that temporarily suppressed negative chemical changes. Whilst this was encouraging,the rehabilitation chronosequence had not yet proven the self-sustainability that it would require for closure purposes. Further monitoring would be required over time. The sustainability of the rehabilitating chronosequence was brought into question by the high acid-forming potential of the tailings growth medium. Concerns were also raised over the ability of the established vegetation cover to persist under conditions of increasing stress and disturbance. Furthermore, the land-use capabilities of the sites are limited by current rehabilitation procedures and various recommendations were made to rectify this. A more streamlined monitoring framework for the tailings complex was also proposed. The contribution of this work lies in its holistic integration of monitoring techniques and the meaningful analysis of ecosystem function, an aspect largely ignored in minesite rehabilitation. / Thesis (M.Sc. (Environmental Sciences and Management))--North-West University, Potchefstroom Campus, 2009.
25

The role of vegetation in characterising landscape function on rehabilitating gold tailings / A.S.H. Haagner

Haagner, Adrian Sigmund Harold January 2008 (has links)
Gold mine waste poses a significant challenge for rehabilitation practitioners and can negatively impact on soil, air, surface water and groundwater quality. This, in turn, can affect the environmental quality of humans and other biota in nearby settlements and surrounding ecosystems. All mines are required to have a plan in place to impede or mitigate these environmental impacts and to ensure that all legislation is complied with to apply for closure. Site closure is the eventual goal of all mine residue complexes, as it is the stage at which a company becomes released from all legal and financial liability. The South African legislation is comprehensive and essentially requires that all latent and residual environmental impacts are addressed and that an end land-use designation is put in place that conforms to the principles of sustainable development. The Chemwes Tailings Storage Facility complex near Stilfontein was monitored to provide a strategic assessment of the state of the rehabilitation, and to provide recommendations for the successful remediation of problem sites. A combination of vegetation sampling, landscape function assessments and substrate chemical analyses were conducted to gain a predictive understanding of rehabilitation progress. The monitoring was conducted over two years across a chronosequence of rehabilitating sites from tailings dam slopes and an adjacent spillage site. An undisturbed grassland and a starter-wall served as reference sites. The data were first analysed independently and then by making use of multivariate data ordinations. This allowed for holistic investigations of the relationships between sites, substrate chemistry, vegetation composition and landscape function. The results showed that the tailings dams had a distinctly different suite of vegetation from the reference sites, but had no statistically significant differences in composition across the rehabilitating chronosequence. There were positive correlations between rehabilitation site age and landscape function indices, suggesting that some aspects of ecosystem development were occurring over time. In some sites, deterioration in the substrate quality as a growth medium was observed with increases in acidity and salinity. This was most likely caused by pyrite oxidation in the tailings and the high concentrations of free salts. The increasing acidity and salinity resulted in vegetation senescence and declines in landscape function. However, those sites that possessed higher landscape function appeared to have the ecosystem processes in place that temporarily suppressed negative chemical changes. Whilst this was encouraging,the rehabilitation chronosequence had not yet proven the self-sustainability that it would require for closure purposes. Further monitoring would be required over time. The sustainability of the rehabilitating chronosequence was brought into question by the high acid-forming potential of the tailings growth medium. Concerns were also raised over the ability of the established vegetation cover to persist under conditions of increasing stress and disturbance. Furthermore, the land-use capabilities of the sites are limited by current rehabilitation procedures and various recommendations were made to rectify this. A more streamlined monitoring framework for the tailings complex was also proposed. The contribution of this work lies in its holistic integration of monitoring techniques and the meaningful analysis of ecosystem function, an aspect largely ignored in minesite rehabilitation. / Thesis (M.Sc. (Environmental Sciences and Management))--North-West University, Potchefstroom Campus, 2009.
26

Recreating a functioning forest soil in reclaimed oil sands in northern Alberta

Rowland, Sara Michelle 05 1900 (has links)
During oil-sands mining all vegetation cover, soil, overburden and oil-sand is removed, leaving pits several kilometres wide and hundreds of metres deep. These pits are reclaimed by a variety of treatments using mineral soil or a mixed peat and mineral soil as the capping layer and planted with trees with natural colonisation from adjacent sites. A number of reclamation treatments covering different age classes were compared with a range of natural forest ecotypes to identify the age at which the treatments become similar to a natural site with respect to vegetation composition and key soil attributes relevant to nutrient cycling. Ecosystem function was estimated from plant community composition, litter decomposition, development of an organic layer and bio-available nutrients. Key response variables including moisture, pH, C:N ratios, bio-available nutrients and ground-cover were analysed by non-metric multidimensional scaling and cluster analysis to discover which reclamation treatments were moving towards or merging with natural forest ecotypes and at what age this occurs. On reclaimed sites, bio-available nutrients including nitrate generally were above the natural range of variability but ammonium, phosphorus, potassium, sodium and manganese were generally very low and limiting to ecosystem development. Plant diversity was similar to natural sites from 5 years to 30 years after reclamation, but declined as reclaimed sites approached canopy closure. Grass and forb leaf litters decomposed faster than aspen or pine in the first year, but decomposition on one reclamation treatment fell below the natural range of variability. Development of an organic layer appeared to be facilitated by the presence of shrubs, while forbs correlated negatively with first-year decomposition of aspen litter. The better restoration amendments for tailings sands involved repeated fertilisation of peat: mineral mixtures in the early years of plant establishment, these became similar to a target ecotype at about 25 years. Good results were also shown by subsoil laid over non-saline overburden and fertilised once, these became similar to a target ecotype at about 15 years. Other treatments receiving a single application of fertiliser remain entrenched in the early reclamation phase for up to 25 years.
27

Spatial Relationships among Soil Nutrients, Plant Biodiversity and Aboveground Biomass In the Inner Mongolia Grassland, China

January 2011 (has links)
abstract: The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in ecology, and a number of recent field experimental studies have greatly improved our understanding of this relationship. Spatial heterogeneity is a ubiquitous characterization of ecosystem processes, and has played a significant role in shaping BEF relationships. The first step towards understanding the effects of spatial heterogeneity on the BEF relationships is to quantify spatial heterogeneity characteristics of key variables of biodiversity and ecosystem functioning, and identify the spatial relationships among these variables. The goal of our research was to address the following research questions based on data collected in 2005 (corresponding to the year when the initial site background information was conducted) and in 2008 (corresponding to the year when removal treatments were conducted) from the Inner Mongolia Grassland Removal Experiment (IMGRE) located in northern China: 1) What are the spatial patterns of soil nutrients, plant biodiversity, and aboveground biomass in a natural grassland community of Inner Mongolia, China? How are they related spatially? and 2) How do removal treatments affect the spatial patterns of soil nutrients, plant biodiversity, and aboveground biomass? Is there any change for their spatial correlations after removal treatments? Our results showed that variables of biodiversity and ecosystem functioning in the natural grassland community would present different spatial patterns, and they would be spatially correlated to each other closely. Removal treatments had a significant effect on spatial structures and spatial correlations of variables, compared to those prior to the removal treatments. The differences in spatial pattern of plant and soil variables and their correlations before and after the biodiversity manipulation may not imply that the results from BEF experiments like IMGRE are invalid. However, they do suggest that the possible effects of spatial heterogeneity on the BEF relationships should be critically evaluated in future studies. / Dissertation/Thesis / M.S. Biology 2011
28

Processos ecossistêmicos e funcionalidade de florestas em restauração

Rosenfield, Milena Fermina January 2017 (has links)
A restauração florestal é mais do que somente plantar árvores. É necessário que haja o monitoramento do desenvolvimento da floresta no que diz respeito tanto a parâmetros estruturais e florísticos, mas também aos processos ecológicos. Esses processos propiciam as interações entre as espécies e promovem a funcionalidade do sistema, provendo serviços ecossistêmicos. Por isso, é necessário, além de monitorar o crescimento da vegetação, avaliar se o ecossistema está operando da forma como seria esperado. O objetivo desta tese é abordar questões referentes aos processos ecológicos e atributos funcionais em áreas florestais em processo de restauração. No primeiro capítulo, foi realizada uma revisão sistemática com o intuito de identificar os processos ecológicos e as variáveis que são medidas em estudos de restauração florestal. Os três capítulos seguintes foram baseados na coleta de dados em três sítios de estudo, situados no Estado do Rio Grande do Sul, Brasil. Foram coletados dados em florestas que tiveram intervenções de restauração (com aproximadamente 10 anos de desenvolvimento), bem como em florestas de remanescentes (utilizadas como sistema de referência). Além da amostragem da vegetação arbórea, foram coletados dados de diversos processos ecológicos, relacionados à ciclagem de nutrientes (decomposição, detritivoria e qualidade da serapilheira e do solo), produtividade (biomassa arbórea acima do solo e biomassa de folhas) e recrutamento (regeneração natural), bem como informações sobre atributos foliares, reprodutivos e de crescimento das espécies. Os resultados obtidos para cada um dos capítulos indicaram que: (1) os processos mais comumente avaliados foram aqueles relacionados à ciclagem de nutrientes, seguido por resiliência do ecossistema, produtividade, relações hídricas e interações bióticas; além disso foi identificado que os resultados positivos das ações de restauração nos processos ecológicos aumentam a medida que os sítios se tornam mais antigos; (2) áreas em restauração ainda diferem de suas respectivas florestas de referência para quase todas as variáveis analisadas, mas, ao contrário da nossa expectativa inicial, as diferenças foram maiores quando considerados os parâmetros estruturais da vegetação, indicando que os processos ecológicos podem se restabelecer antes mesmo da floresta atingir sua completa complexidade estrutural; (3) as variáveis que mais afetaram os processos ecológicos foram aquelas relacionadas aos atributos funcionais, tendo a riqueza de espécies na comunidade apenas um papel secundário na variação dos processos ecológicos estudados; além disso, tanto variáveis de composição funcional, quanto de diversidade funcional tiveram influência nos processos; e (4) modelos utilizados para avaliar a semelhança funcional entre restauração e referência indicaram que a comunidade presente no sub-bosque da restauração apresenta uma maior semelhança funcional com o sistema de referência do que a comunidade do dossel, indicando que as espécies utilizadas nos plantios diferem consideravelmente em sua composição funcional das áreas de referência. Esse estudo ressalta a importância de se compreender melhor os processos ecológicos em ecossistemas florestais e sua aplicação na avaliação do funcionamento de áreas em processo de restauração. O monitoramento desses sítios deve ser realizado a longo prazo de forma a verificar as variações ao longo do desenvolvimento florestal e avaliar as trajetórias sucessionais, sugerindo ações de manejo se necessário. / Forest restoration is more than just planting trees. It is required that forest growth is monitored both by measuring structural and floristic parameters, but also ecological processes. These processes provide interactions among species and promote ecosystem functionality, also offering important ecosystem services. Thus, it is necessary that besides monitoring vegetation growth, it should be evaluated if the ecosystem is operating as would be expected. The objective of this thesis it to address questions related to the ecological processes and functional traits in forests sites undergoing restoration. In the first chapter, we performed a systematic review in order to identify the ecological processes and the variables measured in forest restoration studies. The following three chapters were based on data collected in three study sites, located in the State of Rio Grande do Sul, Brazil. We collected data in forests subjected to restoration (approximately 10 years-old) and more conserved forests not subjected to restoration (used as reference ecosystem). Besides sampling tree components, we collected data on several ecological processes, related to nutrient cycling (decomposition, detritivory and litter and soil quality), productivity (aboveground tree biomass and litter biomass) and recruitment (natural regeneration), as well as information on leaf, reproductive and growth traits of species. The results obtained for each chapter indicated that: (1) the processes that were more frequently measured were the ones related to nutrient cycling, followed by ecosystem resilience, productivity, water relations and biotic interactions; additionally, we identified that positive results of restoration interventions on the ecological processes increased as sites became older; (2) restoration sites still differed from their reference ecosystems for all variables evaluated, but opposed to what we initially expected, these differences were even greater when we considered the structural parameters from the vegetation, suggesting that ecological processes may recover even before the full reestablishment of forest complexity; (3) the variables that most affected ecological processes were the ones related to functional traits, and community species richness had only a secondary role in the variation of ecological processes; in addition, both variables related to functional composition and functional diversity affected the ecological processes evaluated; and (4) the models used to evaluate functional similarity between restoration and reference indicated that the community growing in the understory of the restoration site is functionally more similar to the reference than the canopy community, suggesting that the species used in restoration plantings differ considerably in functional composition from reference sites. This study highlights the importance of ecological processes in forest ecosystems and its application in the evaluation of the functioning of sites undergoing restoration. Monitoring of these sites should be performed for a long period, in order to verify changes during forest growth and to evaluate sucessional trajectories, suggesting management actions if necessary.
29

Processos ecossistêmicos e funcionalidade de florestas em restauração

Rosenfield, Milena Fermina January 2017 (has links)
A restauração florestal é mais do que somente plantar árvores. É necessário que haja o monitoramento do desenvolvimento da floresta no que diz respeito tanto a parâmetros estruturais e florísticos, mas também aos processos ecológicos. Esses processos propiciam as interações entre as espécies e promovem a funcionalidade do sistema, provendo serviços ecossistêmicos. Por isso, é necessário, além de monitorar o crescimento da vegetação, avaliar se o ecossistema está operando da forma como seria esperado. O objetivo desta tese é abordar questões referentes aos processos ecológicos e atributos funcionais em áreas florestais em processo de restauração. No primeiro capítulo, foi realizada uma revisão sistemática com o intuito de identificar os processos ecológicos e as variáveis que são medidas em estudos de restauração florestal. Os três capítulos seguintes foram baseados na coleta de dados em três sítios de estudo, situados no Estado do Rio Grande do Sul, Brasil. Foram coletados dados em florestas que tiveram intervenções de restauração (com aproximadamente 10 anos de desenvolvimento), bem como em florestas de remanescentes (utilizadas como sistema de referência). Além da amostragem da vegetação arbórea, foram coletados dados de diversos processos ecológicos, relacionados à ciclagem de nutrientes (decomposição, detritivoria e qualidade da serapilheira e do solo), produtividade (biomassa arbórea acima do solo e biomassa de folhas) e recrutamento (regeneração natural), bem como informações sobre atributos foliares, reprodutivos e de crescimento das espécies. Os resultados obtidos para cada um dos capítulos indicaram que: (1) os processos mais comumente avaliados foram aqueles relacionados à ciclagem de nutrientes, seguido por resiliência do ecossistema, produtividade, relações hídricas e interações bióticas; além disso foi identificado que os resultados positivos das ações de restauração nos processos ecológicos aumentam a medida que os sítios se tornam mais antigos; (2) áreas em restauração ainda diferem de suas respectivas florestas de referência para quase todas as variáveis analisadas, mas, ao contrário da nossa expectativa inicial, as diferenças foram maiores quando considerados os parâmetros estruturais da vegetação, indicando que os processos ecológicos podem se restabelecer antes mesmo da floresta atingir sua completa complexidade estrutural; (3) as variáveis que mais afetaram os processos ecológicos foram aquelas relacionadas aos atributos funcionais, tendo a riqueza de espécies na comunidade apenas um papel secundário na variação dos processos ecológicos estudados; além disso, tanto variáveis de composição funcional, quanto de diversidade funcional tiveram influência nos processos; e (4) modelos utilizados para avaliar a semelhança funcional entre restauração e referência indicaram que a comunidade presente no sub-bosque da restauração apresenta uma maior semelhança funcional com o sistema de referência do que a comunidade do dossel, indicando que as espécies utilizadas nos plantios diferem consideravelmente em sua composição funcional das áreas de referência. Esse estudo ressalta a importância de se compreender melhor os processos ecológicos em ecossistemas florestais e sua aplicação na avaliação do funcionamento de áreas em processo de restauração. O monitoramento desses sítios deve ser realizado a longo prazo de forma a verificar as variações ao longo do desenvolvimento florestal e avaliar as trajetórias sucessionais, sugerindo ações de manejo se necessário. / Forest restoration is more than just planting trees. It is required that forest growth is monitored both by measuring structural and floristic parameters, but also ecological processes. These processes provide interactions among species and promote ecosystem functionality, also offering important ecosystem services. Thus, it is necessary that besides monitoring vegetation growth, it should be evaluated if the ecosystem is operating as would be expected. The objective of this thesis it to address questions related to the ecological processes and functional traits in forests sites undergoing restoration. In the first chapter, we performed a systematic review in order to identify the ecological processes and the variables measured in forest restoration studies. The following three chapters were based on data collected in three study sites, located in the State of Rio Grande do Sul, Brazil. We collected data in forests subjected to restoration (approximately 10 years-old) and more conserved forests not subjected to restoration (used as reference ecosystem). Besides sampling tree components, we collected data on several ecological processes, related to nutrient cycling (decomposition, detritivory and litter and soil quality), productivity (aboveground tree biomass and litter biomass) and recruitment (natural regeneration), as well as information on leaf, reproductive and growth traits of species. The results obtained for each chapter indicated that: (1) the processes that were more frequently measured were the ones related to nutrient cycling, followed by ecosystem resilience, productivity, water relations and biotic interactions; additionally, we identified that positive results of restoration interventions on the ecological processes increased as sites became older; (2) restoration sites still differed from their reference ecosystems for all variables evaluated, but opposed to what we initially expected, these differences were even greater when we considered the structural parameters from the vegetation, suggesting that ecological processes may recover even before the full reestablishment of forest complexity; (3) the variables that most affected ecological processes were the ones related to functional traits, and community species richness had only a secondary role in the variation of ecological processes; in addition, both variables related to functional composition and functional diversity affected the ecological processes evaluated; and (4) the models used to evaluate functional similarity between restoration and reference indicated that the community growing in the understory of the restoration site is functionally more similar to the reference than the canopy community, suggesting that the species used in restoration plantings differ considerably in functional composition from reference sites. This study highlights the importance of ecological processes in forest ecosystems and its application in the evaluation of the functioning of sites undergoing restoration. Monitoring of these sites should be performed for a long period, in order to verify changes during forest growth and to evaluate sucessional trajectories, suggesting management actions if necessary.
30

Crop residue management in oil palm plantations : soil quality, soil biota and ecosystem functions

Tao, Hsiao-Hang January 2017 (has links)
The application of crop residues is one of the most common agricultural practices used to maintain soil ecosystems and crop productivity. This thesis focuses on the oil palm (Elaeis guineensis) agroecosystem, an important tropical crop that has expanded rapidly over the past four decades. Both land conversion and business-as-usual practices within the plantations have contributed to soil degradation. The application of oil palm residues, such as empty fruit bunches (EFB) and oil palm fronds, are thought to have positive effects on the soil ecosystem; yet there is currently a deficit of knowledge on their effectiveness. This thesis aims to examine the effects of oil palm residue application on soil physicochemical properties, soil biota, and ecosystem functions. It reports the results of extensive field trials, sample collection, and statistical analysis of crop residue applications in oil palm plantations in Central Sumatra, Indonesia. Four key results emerged from the thesis. First, in this study site land conversion from secondary forest to oil palm does not affect litter decomposition rate, but positively influences soil fauna activity. Second, there is greater soil fauna activity following EFB application than oil palm fronds or chemical fertilizers, and the fauna activity is highly associated with changes in soil chemical properties and soil moisture conditions. Third, EFB application enhances soil ecosystem functions, through the direct provision of organic matter, and by influencing soil biota. Finally, over 15 years of application, EFB appears to be effective in maintaining or increasing annual crop yield in comparison to chemical fertiliser treatment. Temporal changes in crop yield under EFB application appear to be associated with climatic conditions and soil organic carbon. Overall, these findings improve our understanding of the potential of oil palm residue applications to increase soil quality, soil biota, and ecosystem functions. They also provide useful information for a wider audience of soil ecologists, agricultural managers, and policy makers to improve sustainable management of the oil palm ecosystem.

Page generated in 0.0653 seconds