Spelling suggestions: "subject:"eddy"" "subject:"ddy""
141 |
Simulation aux grandes échelles des écoulements liquide-gaz : application à l'atomisation / Large eddy simulation for liquid-gas flow : application to atomizationHecht, Nicolas 15 March 2016 (has links)
Cette thèse est dédiée à l'amélioration des modèles d'atomisation pour les injecteurs automobiles. Le but est de développer et d'évaluer des modèles numériques permettant de capturer le passage de structures liquides en cours d'atomisation depuis les grandes échelles vers les petites échelles de sous-maille dans des configurations complexes. Dans un premier temps, nous mettons en place une procédure de calcul permettant le passage d'une description Eulérienne d'un spray à une procédure Lagrangienne. Afin de ne pas perdre les plus petites structures liquides, celles-ci seront transformées en particules Lagrangienne. Une analyse sur différentes grandeurs physiques, telles que la masse, la quantité de mouvement ou l'énergie cinétique turbulente, lors de cette transformation a été réalisée. L'autre partie de ce travail est consacrée au développement d'un modèle de simulation aux grandes échelles des écoulements diphasiques. La simulation de l'atomisation requiert un traitement spécifique de l'interface. Deux cas limites sont traités dans la littérature : • L'interface peut bien être capturée par le maillage. A ces endroits, une méthode classique de type DNS (Direct Numerical Simulation), comme les méthodes VOF (Volume of Fluid), doit être utilisée. • Lors de la création de plissements inférieurs à la taille de la maille, le maillage ne permet plus de suivre fidèlement l'interface. Il faut alors que le calcul reproduise des résultats d'une méthode LES (Large Eddy Simulation) considérant des structures et des gouttes inférieures à la taille de la maille. Ainsi, la problématique principale consiste à déterminer la configuration dans laquelle se trouve l'interface. La mise en œuvre de ce modèle a permis d'obtenir des résultats dans une configuration proche de l'injection Diesel, qui sont alors comparés à une DNS de référence. / This thesis is dedicated to improve atomization models for automobile injectors. The aim is to develop and evaluate numerical models to capture the liquid structure while they are being atomized from large scales to small sub grid scales in complex configurations. Initially, a calculation procedure is introduced for the transition to an Eulerian description of a spray into a Lagrangian description. In order not to lose the smallest fluid structures, they will be transformed into Lagrangian particles. During this process, an analysis is been performed with various physical parameters such as mass, momentum, or turbulent kinetic energy. The other part of this work is dedicated to the development of a LES (Large Eddy Simulation) for multiphase flow. The simulation of the spray requires a specific treatment of the interface. Two limiting cases are treated in the literature: • The interface may be captured by the mesh. At these locations, a conventional method of DNS (Direct Numerical Simulation) should be used, like the VOF method (Volume of Fluid). • When creating pleating smaller than the size of the mesh, the mesh can no longer match the interface. Then, the calculation must reproduce results from a LES method that take into account structures and drops smaller than the mesh size. Thus, the main problem is to define the configuration of the interface. The development of this model allows to obtain results in a configuration close to the Diesel injection's, which are then compared to a reference DNS.
|
142 |
Local heat transfer coefficients in an annular passage with flow turbulationSteyn, Rowan Marthinus January 2020 (has links)
In this experimental and numerical investigation, the use of flow turbulation was considered as a method to increase local heat transfer coefficients in annular heat transfer passages. Experimental data was obtained for cases with and without inserted ring turbulators within a horizontal annular test section using water for average Reynolds numbers ranging from 2000 to 7500 and average Prandtl numbers ranging from 6.73 to 6.79. The test section was heated uniformly on the inner annular wall and had a hydraulic diameter of 14.8mm, a diameter ratio (inner wall diameter to outer wall diameter) of 0.648, and a length to hydraulic diameter ratio of approximately 74. A set of circular cross sectioned ring-type turbulators were used which had a thickness of 1mm, a ring diameter of 15.1mm and a pitch of 50mm. It was found that the presence of the flow turbulators increased the average Nusselt number by between 33.9% and 45.8%. The experimental tests were followed by numerical simulations to identify the response in the heat transfer coefficient by changing the geometry of the turbulators. For this, the turbulator diameters were ranged from 0.5 mm to 2 mm, and the gap size (between the inner wall and a turbulator ring) ranged from 0.125 mm to 4 mm at a pitch of 50 mm. The results showed that the use of turbulators increased the Nusselt numbers by a maximum of 34.8% and that the maximum can be achieved for a turbulator diameter of 2 mm and a gap size of 0.25 mm, for all the Reynolds numbers tested. From the numeric determined pressure drop values it was found that the smaller gap size had the lowest pressure drop and the smallest turbulators also produced the lowest pressure drop. / Dissertation (MEng)--University of Pretoria 2020 / South African Centre for High Performance Computing (CHPC) / Mechanical and Aeronautical Engineering / MEng / Unrestricted
|
143 |
Numerical study of a wind tunnel setup for measuring train slipstream with Detached Eddy SimulationDhanabalan, Yogeshwar January 2013 (has links)
High speed trains have become an integral part of the transportation systems around the world. With increasing speed, very high velocities are generated in the region around the train known as slipstream. Experimental studies have been conducted over the last few decades to study the effect of these phenomena. Slipstream velocities have been measured using anemometers placed near real trains running on the tracks and model trains running on rigs like moving model rig and rotating rail rig. However, most of these studies are quite expensive to conduct. The purpose of this thesis is to find an alternative way to measure the slipstream. Detached Eddy Simulation is used to simulate the flow around a 1:15 scaled model of an ETR500 high speed train with different configurations similar to tests conducted on the track and in the wind tunnel. The results from the simulations are compared with the data obtained from experimental tests conducted on the Torino-Novara high speed line. A wind tunnel test is also carried out to validate the CFD data. It is concluded from the results that the wind tunnel setup with a slip floor in front of the train can be used to find out if the train produces slipstream velocities that are within the limits indicated by the TSI standards.
|
144 |
To make sense of dungeonsTolinsson, Simon, Flodhag, Alexander January 2020 (has links)
Together with the growth of procedural content generation in game development, there is a need for a viable generation method of procedural context to make sense of the content within game space. Previous research discusses how interactivity and narrative are almost opposite of each other and when combined needs to be generated in two steps, one for the game space and the other for context. We propose procedural narrative as context through objectives, as a useful means to structure content in games. In this paper we present and describe an artefact developed as a sub-system to the Evolutionary Dungeon Designer (EDD), that procedurally generates objectives for the dungeons created with the tool. The artefact is developed with macro patterns which can be defined as an extension of the existing meso patterns in EDD. The macro patterns are used to generate objectives in the rooms of the dungeons, and the system evaluates the priority of the room objectives based on the design of the dungeon and the quality of the objective to maximize the usage of game space and create a suitable narrative. The work for this thesis and its artefact resulted in a successful expansion on the knowledge of procedural narrative generation by presenting macro patterns as a viable solution for contextualization of procedural game content.
|
145 |
Weakly inhomogeneous turbulence theory with applications to geophysical flowsHo, Lin, Ph. D. Massachusetts Institute of Technology January 1982 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Meteorology and Physical Oceanography, 1982. / Microfiche copy available in Archives and Science. / Supervised by Edward N. Lorenz. / Includes bibliographical references (leaves 141-145). / by Lin Ho. / Ph.D.
|
146 |
Diagnostic study on the forcing of the Ferrel cellSalustri, Giovanna January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Meteorology and Physical Oceanography, 1982. / Microfiche copy available in Archives and Science / Bibliography: leaves 39-41. / by Giovanna Salustri. / M.S.
|
147 |
A Computationally Economic Three Dimensional Magnetic Modelling SystemMishra, Munna 06 1900 (has links)
No description available.
|
148 |
Spectrally correct finite element analysis of electromagnetic fieldsPinchuk, Amy Ruth January 1988 (has links)
No description available.
|
149 |
Eddy Impaction As An Ash Deposition Mechanism: A Theoretical And Experimental InvestigationLi, Minmin 07 July 2011 (has links) (PDF)
The eddy impaction ash deposition model derived and validated in this document predicts eddy impaction rates as a function of turbulence intensity, boundary layer thickness, and gas velocity. The experimental apparatus introduces small particles (200 nm, 25 µm, and 500 µm diameter) into a gas stream flowing through a horizontal pipe (Re 2,300-8,000). The particles deposit on the pipe wall and the total mass of impacted particles provides a measure of collection efficiency. Experimental results indicate deposition velocity increases with Reynolds number, consistent with eddy impaction theory and based on increased turbulent energy. Eddy impaction also increases with particle size at fixed Reynolds number, again consistent with theory.
|
150 |
Reducing Eddy Currents In High Magnetic Field EnvironmentsCase, Russell 01 January 2008 (has links)
When an electrical conducting volume is placed into the bore of an MRI undergoing an image scan, time varying magnetic gradients induce eddy currents in this conducting material. These eddy currents in turn produce a mechanical torque on this volume. It is the goal of this thesis to produce a computer simulation of eddy currents produced by placing conducting materials inside an MRI bore. The first part of the thesis establishes the physics and principles behind an MRI system along with several applications. Next, this thesis presents an analysis of eddy current effects produced on a conductor placed into an MRI bore. The design and construction of simulated MRI magnetic fields is then presented along with a study of simulated eddy currents in various test conducting volumes of selected materials. Finally, techniques are discussed for reducing eddy currents in these conducting volumes and materials, along with simulation results showing the reduction in the applied eddy current. The findings of this thesis are summarized in the conclusions and recommendations are made for modification and future applications of these techniques and simulations.
|
Page generated in 0.0528 seconds