• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 444
  • 133
  • 78
  • 52
  • 20
  • 17
  • 15
  • 15
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 9
  • Tagged with
  • 972
  • 464
  • 438
  • 157
  • 145
  • 131
  • 131
  • 131
  • 119
  • 115
  • 111
  • 109
  • 108
  • 105
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Turbulent heat fluxes in a forest.

McBean, G. A. January 1966 (has links)
No description available.
162

Large Eddy Simulation and Wavelet Analysis of the Flow Field around a Surface Mounted Prism

Elsayed, Mohamed Aly Khamis 27 May 2005 (has links)
Unsteady large-scale vortices, formed by the roll-up of free shear layers separating along sharp edges, are the dominant flow characteristics of the turbulent flow over buildings. These vortical structures interact with each other and with the building surface resulting in secondary separation and severe pressure fluctuations. Moreover, the interaction of the large-scale vortices with the multiplicity of turbulence scales in the incoming wind exacerbates their unsteady motion and hence significantly affects the pressure fluctuations spectra experienced by the building. Large-eddy simulations are conducted to study the interaction of homogeneous turbulence in the incident flow with a surface-mounted prism. A compact fifth-order upwind difference scheme is used to effectively and accurately perform the simulations. Three cases of incident flow are considered. In one case, the prism is placed in a smooth uniform flow. In the second case, homogeneous isotropic turbulence with von Karman spectrum is superimposed on the uniform flow at the inflow boundary. The integral length scale is one-half the prism height. In the third case, the integral length scale is equal to the prism height. The numerical results are compared with experimental measurements reported by Tieleman et al. (2002). The results show that the highest negative mean value of the pressure coefficient on the roof and the sides is about 30% larger in case two of turbulent inflow and takes place closer to the windward edge of the prism. Moreover, the pressure coefficients on the roof and sides of the prism in the case of turbulent inflow show a higher level of variations in comparison with the case of smooth inflow conditions. The predicted mean characteristics of the pressure coefficients in the turbulent case match the experimental values in terms of both magnitude and location on the roof of the prism reported in Tieleman et al. (1998) and Tieleman et al. (2002). As for the peak value, the peak value of -2 obtained in the turbulent inflow case two is about 20% smaller than the values measured experimentally by Tieleman et al. (2002). On the other hand, it is stressed that the peak value in the simulations would increase as the duration of the simulation is increased to match that of the experimental measurement. The results also show that the turbulent case yields a non-exceedence probability for the peak pressure coefficient that is closer to the one obtained from the measured data than the smooth case data. Also, spectral and cross-spectral analysis are carried out using complex Morlet wavelet transform to investigate pressure-velocity relation. The study shows that the nonlinearity in the relationship of velocity-pressure is detected using wavelet bicoherence. / Ph. D.
163

Heat Transfer Augmentation Surfaces Using Modified Dimples/Protrusions

Elyyan, Mohammad Ahmad 25 January 2009 (has links)
This work presents direct and large eddy simulations of a wide range of heat augmentation surfaces roughened by modified dimples/protrusions. The dissertation is composed of two main parts: Part I (Chapters 2-4) for compact heat exchangers and Part II (Chapter 5) for internal cooling of rotating turbine blades. Part I consists of three phases: Phase I (Chapter 2) investigates flow structure and heat transfer distribution in a channel with dimples/protrusions; Phase II (Chapter 3) studies the application of dimples as surface roughness on plain fins; and Phase III (Chapter 4) considers a new fin shape, the split-dimple fin, that is based on modifying the conventional dimple shape. Chapter 2 presents direct and large eddy simulations conducted of a fin bank over a wide range of Reynolds numbers, ReH=200-15,000, covering the laminar to fully turbulent flow regimes and using two channel height geometries. While the smaller fin pitch channel has better performance in the low to medium Reynolds number range, both channel heights show similar trends in the fully turbulent regime. Moreover, analysis of the results shows that vortices generated in the dimple cavity and at the dimple rim contribute substantially to heat transfer from the dimpled surface, whereas flow impingement and acceleration between protrusions contribute substantially on the protrusion side. Chapter 3 considers applying dimples as surface roughness on plain fin surfaces to further enhance heat transfer from the fin. Three fin geometries that consider dimple imprint diameter effect and perforation effect are considered. The dimple imprint diameter has a minimal effect on the flow and heat transfer of the fin. However, the introduction of perforation in the dimple significantly changes the flow structure and heat transfer on the dimple side of the fin by eliminating recirculation regions in the dimple and generating higher intensity vortical structures. Chapter 4 presents a novel fin shape, the split-dimple fin, which consists of half a dimple and half a protrusion with an opening between them. The split dimple provides an additional mechanism for augmenting heat transfer by perturbing continuous boundary layer formation on the fin surface and generating energetic shear layers. While the protruding geometry of the split dimple augments heat transfer profoundly, it also increase pressure drop. The split dimple fin results in heat conductance that is 60–175% higher than a plain fin, but at a cost of 4–8 times the frictional losses. Chapter 5 studies the employment of dimples/protrusions on opposite sides for internal cooling of rotating turbine blades. Two geometries with two dimple/protrusion depths are investigated over a wide range of rotation numbers, Rob=-0.77 to 1.10. Results show that the dimple side is more sensitive to the destabilizing forces on the trailing surface, while both react similarly to the stabilizing effect on the leading side. It is concluded that placing the protrusion on the trailing side for low rotation number, |Rob|<0.2, provides better performance, while it is more beneficial to place the dimple side on the trailing side for higher rotation numbers. / Ph. D.
164

Evaluating the influence of establishing pine forests and switchgrass fields on local and global climate

Ahlswede, Benjamin James 18 May 2021 (has links)
Humans have extensively altered terrestrial surfaces through land-use and land-cover change. This change has resulted in increased food, fiber, fuel, and wood that is provisioned by ecosystems to support the human population. Unfortunately, the change has also altered climate through carbon emissions and changes in the surface energy balance. Consequently, maximizing both the provisioning and climate regulation services provided by terrestrial ecosystems is a grand challenge facing a growing global population living in a changing climate. The planting of pine forests for timber and carbon storage and switchgrass fields for bioenergy are two land-cover types that can potentially be used for climate mitigation. Importantly, both are highly productive systems representing contrasts in albedo (grass are brighter than pines) and vegetation height (pines are taller than the grass) along with unknown differences in carbon and water balance that influence local to global climate. Here I use eddy-covariance data to investigate how a transition from a perennial bioenergy crop (switchgrass) to a planted pine plantation alters the local surface temperature, global carbon dioxide concentrations, and global energy balance. First, I found that switchgrass and pine ecosystems have very similar local surface temperatures, especially during the grass growing season. After the switchgrass is harvested, surface temperature in the pine forest is much lower than switchgrass because no vegetation is present to facilitate the evaporation of water. The surface temperature in a bare-ground system (a recent clear-cut) was also high relative to the pine and pre-harvest switchgrass ecosystems. This illustrates the importance of maintaining vegetation cover to reduce local surface temperature. Second, I found that the 30-year mean change in global energy balance (i.e., radiative forcing) from planting a pine ecosystem rather than a switchgrass field was positive (pine warms climate) when considering changes in albedo and carbon measured using eddy-covariance systems. When including harvested carbon, pine and switchgrass can have similar global radiative forcing if all harvested pine carbon is stored, but harvested switchgrass carbon is burned. However, no scenarios I explored resulted in a strong negative radiative forcing by the pine ecosystem relative to the switchgrass field. These results show that afforestation or reforestation in the eastern United States may not result in any climate benefit over planting a switchgrass field. However, the presence of vegetation in both ecosystem types offers a clear benefit by cooling local surface temperatures. / Doctor of Philosophy / Humans are changing the Earth's climate by using oil and gas as fuel that emits greenhouse gases, mainly carbon dioxide, into the atmosphere. Planting trees to reestablish forests is a natural solution for climate change because forests absorb carbon dioxide from the air, but reforestation also changes the Earth's climate in other ways. For example, forests are generally darker than crops and grasses and absorb more sunlight, which traps energy in the atmosphere that can warm global temperature. These non-carbon effects can potentially offset the climate benefit from absorbed carbon dioxide. An alternative natural climate solution is to replace oil and gas with fuels derived from plants, known as bioenergy. Here I compared the local and global climate influence of a tree plantation (loblolly pine) to a bioenergy crop (switchgrass). I found that the local temperature of pine and switchgrass were similar in the summer when the grass was growing, and both were cooler than bare-ground, which was unable to evaporate and transpire water to the atmosphere. Over 30 years, I found that pine and switchgrass absorb similar amounts of carbon. The pine forest absorbs more carbon than switchgrass when it is fully grown but releases carbon during the first five years of growth. As a switchgrass field is brighter than a pine forest, planting a pine forest instead of a switchgrass field warms the Earth's climate. However, assuming no carbon from the harvested trees is released to the atmosphere, the pine and switchgrass have the same influence on global climate. My findings show that a pine plantation and a bioenergy crop can have similar climate benefits when carbon is stored in forests.
165

Large eddy simulation of subsonic mixing layers

Sheen, Shaw-Ching 26 October 2005 (has links)
Large eddy simulation is used to study the large-scale structures in a low subsonic mixing layer and their breakdown to small scales. For 3-D simulations, different finite-difference and pseudo-spectral schemes are tested. The (2, 4) MacCormack Scheme developed by Gottlieb and Turkel (1976) shows the best overall performance. It is very fast and supplies enough but not excessive artificial dissipation. Though slower than MacCormack scheme, the pseudo-spectral method has its advantage: high resolution of the high-wavenumber range when adequate de-aliasing scheme is used. When efficient fast Fourier transform routines are available, this method can be a very good alternative to the MacCormack scheme. Most of the simulations use a modified Smagorinsky-type model (Erlabacher et al. 1992). The effect of different models and model constants is also studied. It is found that the two subgrid-scale (SGS) models, the Smagorinsky model and the linear combination model (Bardina et al. 1983), show significant difference even at the low wavenumber range of the spectra. In the study of three-dimensional subsonic temporal mixing layers, it is found that the streamwise vortex tubes play an important role in the transition process. The vortex interaction of the streamwise vortex tubes and undulated spanwise vortex structures proves to be the dominant mechanism in the development of three-dimensionality and the subsequent generation of small-scale motions. In the absence of pairing of the spanwise vortex tubes, this vortex interaction causes uneven distribution of vorticity along the span of the spanwise vortex tubes and the breaking of the large structures. Following the breaking of the spanwise vortex tubes, the secondary streamwise vortex tubes become the dominant vortex structures. In the case involving pairing, it is found that the relative motion of the spanwise vortex tubes in the pre-pairing process creates much stronger strain rate field between the pairing vortex tubes than the case without pairing. The stronger strain rate field leads to the formation of streamwise vortex tubes with very high vorticity and low induced pressure. This also leads to much stronger vortex interaction between the spanwise and streamwise vortex tubes due to the increased strength of the streamwise vortex tubes. / Ph. D.
166

Advanced Spectral Methods for Turbulent Flows

Nasr Azadani, Leila 24 April 2014 (has links)
Although spectral methods have been in use for decades, there is still room for innovation, refinement and improvement of the methods in terms of efficiency and accuracy, for generalized homogeneous turbulent flows, and especially for specialized applications like the computation of atmospheric flows and numerical weather prediction. In this thesis, two such innovations are presented. First, inspired by the adaptive mesh refinement (AMR) technique, which was developed for the computation of fluid flows in physical space, an algorithm is presented for accelerating direct numerical simulation (DNS) of isotropic homogeneous turbulence in spectral space. In the adaptive spectral resolution (ASR) technique developed here the spectral resolution in spectral space is dynamically refined based on refinement criteria suited to the special features of isotropic homogeneous turbulence in two, and three dimensions. Applying ASR to computations of two- and three-dimensional turbulence allows significant savings in the computational time with little to no compromise in the accuracy of the solutions. In the second part of this thesis the effect of explicit filtering on large eddy simulation (LES) of atmospheric flows in spectral space is studied. Apply an explicit filter in addition to the implicit filter due to the computational grid and discretization schemes in LES of turbulent flows allows for better control of the numerical error and improvement in the accuracy of the results. Explicit filtering has been extensively applied in LES of turbulent flows in physical space while few studies have been done on explicitly filtered LES of turbulent flows in spectral space because of perceived limitations of the approach, which are shown here to be incorrect. Here, explicit filtering in LES of the turbulent barotropic vorticity equation (BVE) as a first model of the Earth's atmosphere in spectral space is studied. It is shown that explicit filtering increases the accuracy of the results over implicit filtering, particularly where the location of coherent structures is concerned. / Ph. D.
167

Nonlinear analysis of eddy-current couplings in feedback control systems

Carlen, Eric Theodore January 1966 (has links)
A nonlinear analysis is developed for eddy-current couplings in feedback control systems. The analysis makes use of the describing function method to predict transient response. Effects of the nonlinearity are discussed and backed with an analog computer study. Conclusions arrived at show the absquare nonlinearity to be advantageous under conditions of zero steady state loading or offset. Under conditions of steady state loading, shifting of the load operating point causes a wide variation in response. This situation is remedied with nonlinear compensation. / Master of Science
168

Turbulence structure and momentum exchange in compound channel flows with shore ice covered on the floodplains

Wang, F., Huai, W., Guo, Yakun, Liu, M. 17 March 2021 (has links)
Yes / Ice cover formed on a river surface is a common natural phenomenon during winter season in cold high latitude northern regions. For the ice-covered river with compound cross-section, the interaction of the turbulence caused by the ice cover and the channel bed bottom affects the transverse mass and momentum exchange between the main channel and floodplains. In this study, laboratory experiments are performed to investigate the turbulent flow of a compound channel with shore ice covered on the floodplains. Results show that the shore ice resistance restricts the development of the water flow and creates a relatively strong shear layer near the edge of the ice-covered floodplain. The mean streamwise velocity in the main channel and on the ice-covered floodplains shows an opposite variation pattern along with the longitudinal distance and finally reaches the longitudinal uniformity. The mixing layer bounded by the velocity inflection point consists of two layers that evolve downstream to their respective fully developed states. The velocity inflection point and strong transverse shear near the interface in the fully developed profile generate the Kelvin-Helmholtz instability and horizontal coherent vortices. These coherent vortices induce quasi-periodic velocity oscillations, while the dominant frequency of the vortical energy is determined through the power spectral analysis. Subsequently, quadrant analysis is used in ascertaining the mechanism for the lateral momentum exchange, which exhibits the governing contributions of sweeps and ejections within the vortex center. Finally, an eddy viscosity model is presented to investigate the transverse momentum exchange. The presented model is well validated through comparison with measurements, whereas the constants α and β appeared in the model need to be further investigated. / National Natural Science Foundation of China (NSFC). Grant Numbers: 52020105006, 11872285: State Key Laboratory of Water Resources and Hydropower Engineering Science (WRHES), Wuhan University. Grant Number: 2018HLG01
169

Modeling of Eddy Current Separation

Yazgan, Selahattin Baris 31 January 2018 (has links)
Eddy current separation aims to recover non-ferrous metals from non-metals utilizing electromagnetic interactions. In order to describe the separation process, a representative model is needed that can accurately calculate the induced forces. Such a model can be used to optimize the efficiency of current equipment as well as designing ones that can offer new capabilities. Models proposed so far for the separation process, using traditional approaches to calculate forces, had limited success due to complex nature of electromagnetic interactions. In this dissertation, a novel method for calculating the magnetic force acting on non-ferrous metal particles was developed. By this method, force calculations can be carried out accurately using intrinsic parameters of particles such as size and shape, as well as its orientation within the field. The method also takes into account the operating parameters of the equipment such as the rotational speed of the magnetic element and the speed of the belt. In order to verify this method and collect empirical data, a novel data acquisition and interpretation approach was developed. A computer simulator was also developed that can calculate trajectories of particles based on operating parameters of the eddy current separator and characteristics of the material being processed. The accuracy of the simulator was verified using empirical data obtained by the novel data acquisition method. This contribution provides a viable option for reducing the cost of analyzing; optimizing and designing eddy current separators. / PHD / As technological advances in chemistry, material science, engineering and manufacturing lead to building of items with smaller parts and complex components, recycling them is becoming more challenging. Production of raw materials, especially metals, from fresh ores in mining has become a challenge due to rising costs and depletion of high grade deposits. Thus, in order to sustain growth of the economy and advances in technology, recycling is of utmost importance. Iron and iron containing metal alloys such as steel can easily be separated with magnets. In order to separate metals that do not contain iron, such as aluminum, copper, brass, lead and zinc, eddy current separators are used. Until now, it was not possible to define the separation process as a whole fundamentally based on the characteristics of particles and operating parameters of eddy current separators. In this research, new methods to analyze the separation process as well as a new technique to calculate the magnetic force acting on metal particles were developed. These will provide great help to optimize current equipment and raise the efficiencies of operations and at the same time serve as a tool to design new and better equipment to increase overall recycling performance.
170

Detached Eddy Simulation Of Turbulent Flow On 2d Hybrid Grids

Yirtici, Ozcan 01 October 2012 (has links) (PDF)
In this thesis study, Detached Eddy Simulation turbulence model is studied in two dimension mainly for flow over single element airfoils in high Reynolds numbers to gain experience with model before applying it to a three dimensional simulations. For this aim, Spalart-Allmaras and standard DES ,DES97, turbulence models are implemented to parallel, viscous, hybrid grid flow solver. The flow solver ,Set2d, is written in FORTRAN language. The Navier-Stokes equations are discretized by first order accurately cell centered finite volume method and solved explicitly by using Runge-Kutta dual time integration technique. Inviscid fluxes are computed using Roe flux difference splitting method. The numerical simulations are performed in parallel environment using domain decomposition and PVM library routines for inter-process communications. To take into account the effect of unsteadyness after the convergence is ensured by local time stepping technique for four order magnitude drop in density residual, global time stepping is applied for 20000 iterations. The solution algorithm is validated aganist the numerical and experimental studies for single element airfoils in subsonic and transonic flows. It is seen that Spalart-Allmaras and DES97 turbulence models give the same results in the non-seperated flows. Grey area is investigated by changing $C_{DES}$ coefficient. Modeled Stress Depletion which cause reduction of eddy viscosity is observed.

Page generated in 0.0383 seconds