• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Turbulence, Magnetics, and Closure Equations

Pratt, Jane 24 June 2003 (has links)
When a ferromagnet is heated, it loses its magnetism. Stars and planets have magnetic fields, as does the Earth. But it is known that the center of the Earth is very hot. Therefore, to sustain the large magnetic field of a planet, we cannot look to simple ferromagnetism like that of a bar magnet, but we have to look at the movement of electric charges within the Earth’s molten core to generate magnetic field. This magnetic field sustainment against ohmic dissipation by turbulent flow is referred to as the turbulent dynamo effect. Theoretical research into the mechanisms that create the dynamo has been actively pursued for several decades, culminating recently in massive computer simulations of the Earth’s core. Most of these studies have employed the equations of magnetohydrodynamics (MHD), a nonlinear theory of electrically conducting fluids. The EDQNM (Eddy-Damped Quasi-Normal Markovian) closure is a statistical model designed so that the turbulence equations derived from Navier-Stokes dynamics can be closed and satisfy the realizability condition of positivity of the kinetic energy spectrum. In case of MHD turbulence, realizability requires more work. We have proved in an earlier work that equations analogous to those expected of the EDQNM closure for MHD without mean fields satisfy the appropriate realizability conditions (Turner and Pratt 1999). In this work, we discuss requirements needed to make the MHD equations realizable with mean fields, extending those of neutral fluid turbulence by Turner [1]. Finally, we discuss direct numerical simulations and the correspondence of the statistical theories with simulation results.
2

Etude asymptotique de la turbulence d'ondes en rotation

Bellet, Fabien 23 July 2003 (has links) (PDF)
Il s'agit de déterminer l'influence d'une rotation solide sur la structure de la turbulence homogène incompressible. Les résultats du modèle spectral EDQNM étant probants en turbulence purement isotrope, la discrétisation spatiale devient un facteur limitant dans le cas anisotrope. Dans le cas où le nombre de Rossby est faible, un développement asymptotique en temps est possible. Le rôle joué par les surfaces résonantes étant dominant, le nouveau modèle conduit à une équation intégro-différentielle fermée pour l'énergie spectrale. Par un traitement numérique précis, un code parallélisé donne des résultats quantitatifs. Il apparaît que l'énergie se concentre avec le temps vers le plan perpendiculaire au vecteur rotation. De plus, le spectre intégré suit une loi de pente -3 dans la zone inertielle, sans que cela soit dû aux seuls vecteurs d'ondes horizontaux. Il n'y a donc pas de vraie bidimensionnalisation, mais les vecteurs proches du plan horizontal ont une dynamique spécifique.

Page generated in 0.0523 seconds