Spelling suggestions: "subject:"eddykovarianz"" "subject:"kovarianz""
1 |
Kohlendioxid- und Wasserflüsse über semiarider Steppe in der Inneren Mongolei (China) / Carbon dioxide and water fluxes over semi-arid grassland in Inner Mongolia (China)Vetter, Sylvia 31 August 2016 (has links) (PDF)
Die semiaride Steppe der Inneren Mongolei (China) ist ein gefährdetes Ökosystem. Der Wandel vom traditionellen nomadischen Lebensstil hin zur konventionellen Landwirtschaft überlastet die Steppe und führt zu Degradierung und Desertifikation. Besonders die intensive Beweidung belastet die weiten Grasflächen und mindert deren natürliches Potential Kohlen-stoff (C) im Boden zu speichern.
Um den Einfluss unterschiedlicher Beweidungsintensitäten auf die semiaride Steppe zu untersuchen, wurden im Rahmen des Projektes Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate (MAGIM) das Einzugsgebiet des Xilin Flusses in der Inneren Mongolei von 2004 bis 2009 untersucht. Dafür wurden u. a. meteorologische und Eddykovarianz-Messungen an definierten Standorten durchgeführt. Ziel dieser Messungen war es, die Unterschiede im Energiehaushalt und den Kohlendioxid- und Wasserflüssen (CO2- und H2O-Flüsse) für die dominanten Steppenarten und unter verschiedenen Beweidungsintensitäten zu erfassen. Die Schließung der Energiebilanz ergab eine Schließungslücke von 10 – 30% in Abhängigkeit der meteorologischen Bedingungen, wobei die Lücke unter feuchten Bedingungen kleiner ist. Die gemessenen CO2- und H2O-Flüsse sind klein im Vergleich zu Grasländern in den gemäßigten Zonen und reagieren sensitiv auf Veränderungen der Einflussfaktoren. Dabei ist die Evapotranspiration (ET) eng an den eingehenden Niederschlag (P) gekoppelt und über längere Zeiträume wie ein Jahr entspricht ET dem P (ET: 185,7 mm a-1 bis 242 mm a-1; P: 138 mm a-1 bis 332 mm a-1). Die Jahressummen für den Nettoökosystemaustausch (NEE) reichen von -10,7 g C m-2 a-1 (2005) bis -67,5 g C m-2 a-1 (2007) für die unbeweidete Steppe und charakterisieren diese als eine leichte Nettosenke für atmosphärisches CO2. Grundsätzlich zeigt die unbeweidete Steppe eine höherer C-Sequestrierung (maximale C-Sequestrierung im Mittel -0,06 g C m-2 s-1) als die beweidete Steppe (maximale C-Sequestrierung im Mittel -0,02 g C m-2 s-1).
Die Messergebnisse zeigen, dass die Steppe unter trockenen Verhältnissen zur CO2-Quelle wird, unter erhöhten Niederschlagsbedingungen zur CO2-Senke und die Beweidung die C-Sequestrierung des Ökosystems unter beiden Bedingungen einschränkt. Im Vergleich der beiden Steppenarten (Leymus chinensis und Stipa grandis) konnte für Leymus chinensis eine höhere Trockentoleranz beobachtet werden. Diese führt zu einer höheren C-Sequestrierung unter trockeneren Verhältnissen. Unabhängig von der Steppenart sind die wichtigsten Einflüsse auf das Ökosystem die Bodenfeuchte, die vom eingehenden P abhängt, die Temperatur (T) und die Beweidung. Diese Faktoren können dabei nicht unabhängig voneinander betrachtet werden. Der Einfluss durch die Beweidung beeinflusst das Ökosystem nachhaltig, wobei die Intensität und die Dauer (Jahre) der Beweidung entscheidend sind, da nicht nur die oberirdische Biomasse reduziert wird, sondern gleichzeitig die Bodeneigenschaften.
Um die Sensitivität auf den CO2- und H2O-Austausch der semiariden Steppe über die Messungen hinaus abzuschätzen, wurden Simulationen mit den Modellen BROOK90 und DAILYDAYCENT (DDC) durchgeführt. Beide Modelle konnten gut an die Bedingungen der semiariden Steppe angepasst werden, wobei die Übereinstimmung zwischen der gemessenen und modellierten ET für BROOK90 besser war (r2 = 0,7) als für DDC (r2= 0,34). Beide Modelle konnten gut die Dynamik der ET-Messungen wiedergeben. Die Sensitivitätsanalyse hat gezeigt, dass die Beziehung zwischen P und ET entscheidend für das Ökosystem ist und sich Änderungen in der T nur zum Ende und Beginn der Vegetationsperiode auf den Wasseraustausch auswirken.
DDC konnte sehr gut den gemessenen CO2-Austausch simulieren. Die Ergebnisse zeigen die Sensitivität gegenüber den klimatischen Faktoren T, P und der Beweidung. Die CO2-Flüsse werden durch hohe Beweidungsintensitäten so stark minimiert, dass andere Einflussfaktoren dahinter zurücktreten. Bei leichten Beweidungsintensitäten wirkt sich dagegen besonders der P auf die Austauschprozesse aus. Die DDC-Ergebnisse zeigen, dass unter den derzeitigen Bedingungen der bodenorganische Kohlenstoff (SOC) verringert wird, also C aus dem Boden freigesetzt wird. Auch unter unbeweideten Verhältnissen steigt der SOC nicht wieder auf das Ausgangsniveau (von vor der Beweidung) an. Die Ergebnisse zeigten, dass die C-Sequestrierung der Steppe nur erhöht werden kann, wenn der P steigt, die T in einem Optimumbereich (+/- 2°C) bleibt und die Beweidung minimiert wird.
Die Messungen und Modellergebnisse zeigen, dass der Niederschlag der limitierende Faktor der semiariden Steppe ist. P bestimmt die Bodenfeuchte, diese wiederum beeinflusst das Pflanzenwachstum und somit den CO2- und H2O-Austausch der Pflanzen. Die Beweidung strapaziert das Ökosystem und reduziert dadurch die CO2- und H2O-Flüsse und verändert die Bodeneigenschaften nachhaltig. Unabhängig von der klimatischen Entwicklung, ist die derzeitige überwiegend hohe Beweidungsintensität der Steppe eine Belastung für das Ökosystem und schränkt das Pflanzenwachstum langfristig ein, was u. a. die Desertifikation begünstigt. / Semiarid grasslands in Inner Mongolia (China) are degrading. The change from the traditional Nomadic lifestyle to conventional agriculture stresses the semiarid grasslands and increases desertification. In particular, intense grazing of the semiarid grasslands reduces their potential of storing carbon (C) in the soil.
In the project Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate (MAGIM) a team of scientists researched the catchment area of the Xilin River to investigate impacts of different grazing intensities on semiarid grasslands. Meteorological and eddy covariance measurements took place from 2004 to 2009. The aim of the measurements was to examine the energy balance and the exchange of the carbon dioxide (CO2) and water (H2O) fluxes of the dominant grasslands in Inner Mongolia under different grazing intensities. The energy balance could be closed by 70 – 90% depending on the driving factors. The energy balance shows a smaller gap for moist conditions. The CO2 und H2O fluxes in the study area are much smaller than in temperate grasslands and show a high sensitivity towards the driving factors. Evapotranspiration (ET) is closely connected to the precipitation (P) and over longer periods of a year or more, ET nearly matches P (ET: 185.7 mm a-1 to 242 mm a-1; P: 138 mm a-1 to 332 mm a-1). The annual net ecosystem exchange (NEE) of ungrazed grassland ranges from -10.7 g C m-2 a-1 (2005) to -67.5 g C m-2 a-1 (2007), which makes the grassland a small CO2-sink. Overall, ungrazed grassland shows higher C sequestration (averaged maximum -0.06 g C m-2 s-1) than grazed grassland (averaged maximum -0.02 g C m-2 s-1).
The measurements show the semiarid grassland as a CO2-source under dry conditions and as a CO2-sink under moist conditions, while grazing decreases the C sequestration for both climatic conditions. A comparison of the two dominant steppe types (Leymus chinensis and Stipa grandis) showed a higher tolerance for Leymus chinensis under dry conditions, which resulted in higher C sequestration for this vegetation. Besides the steppe type, the main driving factors are P, temperature (T) and grazing. These factors can not only be considered in isolation, but cross correlation needs to get considered as well. Grazing affects the sustainability of the ecosystem, with an increasing impact due to grazing intensity and duration (years). The impact of grazing influences the vegetation directly and shows indirect impacts for the soil properties.
Simulations with the models BROOK90 and DAILYDAYCENT (DDC) enable a sensitivity analysis of CO2 and H2O fluxes of the semiarid grassland. Both models performed well, but BROOK90 showed a better fit to observed ET (r2 = 0.7) than DDC (r2= 0.34). Both models simulated the dynamics of the measured ET well. The sensitivity analysis showed a close relationship between P und ET and a smaller impact on ET due to a change in T. DDC performs well in the simulation of CO2 exchange dynamics of the semiarid grassland. The results show for high grazing intensities a decreasing influence of the other driving factors. A change in P has an influence on CO2 and H2O fluxes under low grazing intensities. The results also show a decrease in soil organic carbon (SOC) as grazing intensity increases (under current climatic conditions). An increase in SOC could only be achieved under an increase in P, an optimum T and low grazing intensities.
The measurements and results of the simulations indentify P as the main driving factor controlling the CO2 and H2O fluxes in the semiarid grassland. P influences the soil moisture and this influences plant growth, which governs the CO2 and H2O exchange of the vegetation. Grazing decreases the CO2 and H2O exchange and affects the soil properties in the long term. Besides climate change, the current high grazing intensities of the semiarid grassland have a negative impact on the ecosystem, decreasing plant growth and increasing desertification.
|
2 |
Kohlendioxid- und Wasserflüsse über semiarider Steppe in der Inneren Mongolei (China)Vetter, Sylvia 09 June 2016 (has links)
Die semiaride Steppe der Inneren Mongolei (China) ist ein gefährdetes Ökosystem. Der Wandel vom traditionellen nomadischen Lebensstil hin zur konventionellen Landwirtschaft überlastet die Steppe und führt zu Degradierung und Desertifikation. Besonders die intensive Beweidung belastet die weiten Grasflächen und mindert deren natürliches Potential Kohlen-stoff (C) im Boden zu speichern.
Um den Einfluss unterschiedlicher Beweidungsintensitäten auf die semiaride Steppe zu untersuchen, wurden im Rahmen des Projektes Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate (MAGIM) das Einzugsgebiet des Xilin Flusses in der Inneren Mongolei von 2004 bis 2009 untersucht. Dafür wurden u. a. meteorologische und Eddykovarianz-Messungen an definierten Standorten durchgeführt. Ziel dieser Messungen war es, die Unterschiede im Energiehaushalt und den Kohlendioxid- und Wasserflüssen (CO2- und H2O-Flüsse) für die dominanten Steppenarten und unter verschiedenen Beweidungsintensitäten zu erfassen. Die Schließung der Energiebilanz ergab eine Schließungslücke von 10 – 30% in Abhängigkeit der meteorologischen Bedingungen, wobei die Lücke unter feuchten Bedingungen kleiner ist. Die gemessenen CO2- und H2O-Flüsse sind klein im Vergleich zu Grasländern in den gemäßigten Zonen und reagieren sensitiv auf Veränderungen der Einflussfaktoren. Dabei ist die Evapotranspiration (ET) eng an den eingehenden Niederschlag (P) gekoppelt und über längere Zeiträume wie ein Jahr entspricht ET dem P (ET: 185,7 mm a-1 bis 242 mm a-1; P: 138 mm a-1 bis 332 mm a-1). Die Jahressummen für den Nettoökosystemaustausch (NEE) reichen von -10,7 g C m-2 a-1 (2005) bis -67,5 g C m-2 a-1 (2007) für die unbeweidete Steppe und charakterisieren diese als eine leichte Nettosenke für atmosphärisches CO2. Grundsätzlich zeigt die unbeweidete Steppe eine höherer C-Sequestrierung (maximale C-Sequestrierung im Mittel -0,06 g C m-2 s-1) als die beweidete Steppe (maximale C-Sequestrierung im Mittel -0,02 g C m-2 s-1).
Die Messergebnisse zeigen, dass die Steppe unter trockenen Verhältnissen zur CO2-Quelle wird, unter erhöhten Niederschlagsbedingungen zur CO2-Senke und die Beweidung die C-Sequestrierung des Ökosystems unter beiden Bedingungen einschränkt. Im Vergleich der beiden Steppenarten (Leymus chinensis und Stipa grandis) konnte für Leymus chinensis eine höhere Trockentoleranz beobachtet werden. Diese führt zu einer höheren C-Sequestrierung unter trockeneren Verhältnissen. Unabhängig von der Steppenart sind die wichtigsten Einflüsse auf das Ökosystem die Bodenfeuchte, die vom eingehenden P abhängt, die Temperatur (T) und die Beweidung. Diese Faktoren können dabei nicht unabhängig voneinander betrachtet werden. Der Einfluss durch die Beweidung beeinflusst das Ökosystem nachhaltig, wobei die Intensität und die Dauer (Jahre) der Beweidung entscheidend sind, da nicht nur die oberirdische Biomasse reduziert wird, sondern gleichzeitig die Bodeneigenschaften.
Um die Sensitivität auf den CO2- und H2O-Austausch der semiariden Steppe über die Messungen hinaus abzuschätzen, wurden Simulationen mit den Modellen BROOK90 und DAILYDAYCENT (DDC) durchgeführt. Beide Modelle konnten gut an die Bedingungen der semiariden Steppe angepasst werden, wobei die Übereinstimmung zwischen der gemessenen und modellierten ET für BROOK90 besser war (r2 = 0,7) als für DDC (r2= 0,34). Beide Modelle konnten gut die Dynamik der ET-Messungen wiedergeben. Die Sensitivitätsanalyse hat gezeigt, dass die Beziehung zwischen P und ET entscheidend für das Ökosystem ist und sich Änderungen in der T nur zum Ende und Beginn der Vegetationsperiode auf den Wasseraustausch auswirken.
DDC konnte sehr gut den gemessenen CO2-Austausch simulieren. Die Ergebnisse zeigen die Sensitivität gegenüber den klimatischen Faktoren T, P und der Beweidung. Die CO2-Flüsse werden durch hohe Beweidungsintensitäten so stark minimiert, dass andere Einflussfaktoren dahinter zurücktreten. Bei leichten Beweidungsintensitäten wirkt sich dagegen besonders der P auf die Austauschprozesse aus. Die DDC-Ergebnisse zeigen, dass unter den derzeitigen Bedingungen der bodenorganische Kohlenstoff (SOC) verringert wird, also C aus dem Boden freigesetzt wird. Auch unter unbeweideten Verhältnissen steigt der SOC nicht wieder auf das Ausgangsniveau (von vor der Beweidung) an. Die Ergebnisse zeigten, dass die C-Sequestrierung der Steppe nur erhöht werden kann, wenn der P steigt, die T in einem Optimumbereich (+/- 2°C) bleibt und die Beweidung minimiert wird.
Die Messungen und Modellergebnisse zeigen, dass der Niederschlag der limitierende Faktor der semiariden Steppe ist. P bestimmt die Bodenfeuchte, diese wiederum beeinflusst das Pflanzenwachstum und somit den CO2- und H2O-Austausch der Pflanzen. Die Beweidung strapaziert das Ökosystem und reduziert dadurch die CO2- und H2O-Flüsse und verändert die Bodeneigenschaften nachhaltig. Unabhängig von der klimatischen Entwicklung, ist die derzeitige überwiegend hohe Beweidungsintensität der Steppe eine Belastung für das Ökosystem und schränkt das Pflanzenwachstum langfristig ein, was u. a. die Desertifikation begünstigt. / Semiarid grasslands in Inner Mongolia (China) are degrading. The change from the traditional Nomadic lifestyle to conventional agriculture stresses the semiarid grasslands and increases desertification. In particular, intense grazing of the semiarid grasslands reduces their potential of storing carbon (C) in the soil.
In the project Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate (MAGIM) a team of scientists researched the catchment area of the Xilin River to investigate impacts of different grazing intensities on semiarid grasslands. Meteorological and eddy covariance measurements took place from 2004 to 2009. The aim of the measurements was to examine the energy balance and the exchange of the carbon dioxide (CO2) and water (H2O) fluxes of the dominant grasslands in Inner Mongolia under different grazing intensities. The energy balance could be closed by 70 – 90% depending on the driving factors. The energy balance shows a smaller gap for moist conditions. The CO2 und H2O fluxes in the study area are much smaller than in temperate grasslands and show a high sensitivity towards the driving factors. Evapotranspiration (ET) is closely connected to the precipitation (P) and over longer periods of a year or more, ET nearly matches P (ET: 185.7 mm a-1 to 242 mm a-1; P: 138 mm a-1 to 332 mm a-1). The annual net ecosystem exchange (NEE) of ungrazed grassland ranges from -10.7 g C m-2 a-1 (2005) to -67.5 g C m-2 a-1 (2007), which makes the grassland a small CO2-sink. Overall, ungrazed grassland shows higher C sequestration (averaged maximum -0.06 g C m-2 s-1) than grazed grassland (averaged maximum -0.02 g C m-2 s-1).
The measurements show the semiarid grassland as a CO2-source under dry conditions and as a CO2-sink under moist conditions, while grazing decreases the C sequestration for both climatic conditions. A comparison of the two dominant steppe types (Leymus chinensis and Stipa grandis) showed a higher tolerance for Leymus chinensis under dry conditions, which resulted in higher C sequestration for this vegetation. Besides the steppe type, the main driving factors are P, temperature (T) and grazing. These factors can not only be considered in isolation, but cross correlation needs to get considered as well. Grazing affects the sustainability of the ecosystem, with an increasing impact due to grazing intensity and duration (years). The impact of grazing influences the vegetation directly and shows indirect impacts for the soil properties.
Simulations with the models BROOK90 and DAILYDAYCENT (DDC) enable a sensitivity analysis of CO2 and H2O fluxes of the semiarid grassland. Both models performed well, but BROOK90 showed a better fit to observed ET (r2 = 0.7) than DDC (r2= 0.34). Both models simulated the dynamics of the measured ET well. The sensitivity analysis showed a close relationship between P und ET and a smaller impact on ET due to a change in T. DDC performs well in the simulation of CO2 exchange dynamics of the semiarid grassland. The results show for high grazing intensities a decreasing influence of the other driving factors. A change in P has an influence on CO2 and H2O fluxes under low grazing intensities. The results also show a decrease in soil organic carbon (SOC) as grazing intensity increases (under current climatic conditions). An increase in SOC could only be achieved under an increase in P, an optimum T and low grazing intensities.
The measurements and results of the simulations indentify P as the main driving factor controlling the CO2 and H2O fluxes in the semiarid grassland. P influences the soil moisture and this influences plant growth, which governs the CO2 and H2O exchange of the vegetation. Grazing decreases the CO2 and H2O exchange and affects the soil properties in the long term. Besides climate change, the current high grazing intensities of the semiarid grassland have a negative impact on the ecosystem, decreasing plant growth and increasing desertification.
|
3 |
The impact of climate and land use on surface fluxes of matter and energyBrust, Kristina 26 February 2019 (has links)
Changes in climate and land use interact in a complex system with various feedbacks including water, carbon (C), and nitrogen (N) fluxes. In this dissertation, firstly measurements of surface fluxes were conducted via two different measurement systems, a Bowen Ratio (BR) and an Eddy Covariance (EC) system. Over two succeeding years, fluxes and gradients of heat, water vapour, and CO2 over winter barley and rapeseed were simultaneously measured at Klingenberg, a long-term cropland site in eastern Germany. The two independent systems (EC/BR) are compared with respect to energy and CO2 fluxes. Inspection as well as a neutral regression analysis show that differences between the systems were largest for latent heat LE. EC detects apparently lower LE due to the lack of closure of the energy balance of approximately 30%, whereas the fluxes of CO2 show only smaller differences up to 10%. Therefore, Bowen Ratio setups remain an alternative to EC systems when gradients are large and analysers with high measurement frequency are not available. Encouraged by this analysis, the Modified Bowen Ratio system was used to measure the vertical gradients of mixing ratios of nitrogen oxides (NOx) and ammonia (NH3). Fluxes of these nitrogen species are analysed and associated to the corresponding growth status of two crops within two growing periods. Integration of these nitrogen fluxes results in a net emission into the atmosphere of 1.25 kg N ha-1 for the total measurement period of 77 days, differing in the proportion of NOx and NH3. However, this net emission does not largely reduce the fertilization of the crop site.
In a second step, the atmospheric boundary layer model HIRVAC (HIgh Resolution Vegetation Atmosphere Coupler) was improved and applied to three different land uses within the TU-Dresden-cluster for selected time periods in 2009 and 2010. Simulated fluxes of H2O and CO2 with the improved model HIRVAC show good agreement with measurements. Realistic fluxes were obtained with respect to the diurnal cycle as well as the order of magnitude. Modelling of energy and trace gas fluxes also gives the opportunity to assess effects of changing climate conditions on surface fluxes. Since in the improved HIRVAC version a coupled model for stomatal conductance is used, an increase in CO2 concentration is linked with a decrease of stomatal conductance in the simulation. Therefore, simulations of changes in climate condition along with elevated CO2 concentrations and their effect on latent heat fluxes are analysed. The grassland and agricultural site revealed increased evapotranspiration with elevated temperatures and CO2 concentrations, whereas the forest site came up with reduced evapotranspiration rates. Concerning the flux of CO2, all land uses considered here increased the amount of assimilated carbon, whereby the forest site increased the most. Finally, the scenario calculations revealed that regarding evapotranspiration and CO2, differences of land use dominate over differences of climate change. / Veränderungen des Klimas und von Landnutzungen wirken sich in einem komplexen System mit diversen Rückkopplungen auf die Wasser-, Kohlenstoff- und Stickstoffflüsse aus. In dieser Dissertation wurden zuerst Flüsse mit zwei unterschiedlichen Methoden erfasst, einem Bowen-Ratio (BR) und einem Eddy-Kovarianz (EC) System. Dafür wurden für zwei aufeinanderfolgende Jahre Gradienten bzw. Flüsse von Wärme, Wasserdampf und CO2 über Wintergerste und Raps an einem langjährigen Agrarstandort im Osten Deutschlands (Station Klingenberg) gemessen. Die zwei unabhängigen Messmethoden (EC/BR) werden in dieser Arbeit in Bezug auf die Energie- und CO2-Flüsse miteinander verglichen. Die genaue Analyse dieser Flüsse ergibt, dass die größten Unterschiede zwischen den Messmethoden im latenten Wärmefluss (LE) vorzufinden sind. Bedingt durch die Schließungslücke von ungefähr 30 % ergibt die EC-Methode einen geringeren latenten Wärmefluss, wohingegen die Flüsse von CO2 nur Unterschiede um 10 % aufweisen. Wie der Vergleich zeigt, ist die Bowen-Ratio-Messmethode besonders dann eine wertvolle Alternative zu EC-Systemen, wenn die Gradienten der gemessenen Komponenten groß sind oder wenn Analysatoren mit hoher Messfrequenz nicht verfügbar sind. Bestärkt durch diese Ergebnisse, wurde das modifizierte Bowen-Ratio-System (MBR) verwendet, um vertikale Gradienten der Mischungsverhältnisse von Stickoxiden (NOx) und Ammoniak (NH3) zu messen. Die ermittelten Flüsse dieser Stickstoffkomponenten werden mit den Entwicklungsstadien der jeweiligen Feldfrüchte innerhalb zweier Anbauperioden in Verbindung gebracht. Die Summe der gemessenen Stickstoffflüsse ergibt eine Nettoemission in die Atmosphäre von 1,25 kg N ha-1 über die gesamte Messperiode von 77 Tagen (mit unterschiedlichen Anteilen von NOx und NH3), wobei diese Emission die Düngung der Agrarfläche nur geringfügig reduziert. Diese Ergebnisse stehen im Einklang mit Messergebnissen an anderen Agrarstandorten.
Im zweiten Teil wurde das atmosphärische Grenzschichtmodell HIRVAC (HIgh Resolution Vegetation Atmosphere Coupler) überarbeitet und für drei unterschiedliche Landnutzungen innerhalb des TU-Dresden-Clusters für ausgewählte Zeitscheiben der Jahre 2009 und 2010 angewandt. Die mit dem Modell HIRVAC simulierten Flüsse von Wasser und CO2 zeigen eine gute Übereinstimmung mit den Messungen. Bezüglich des Tagesganges sowie auch in ihrer jeweiligen Größenordung wurden realistische Flüsse berechnet. Die Modellierung der Energie- und Spurengasflüsse bietet außerdem die Möglichkeit, Auswirkungen von veränderlichen klimatischen Bedingungen auf die turbulenten Flüsse zu bewerten. Da in der verbesserten HIRVAC-Version ein gekoppeltes Modell für die stomatäre Leitfähigkeit verwendet wird, ist nun innerhalb der Simulation ein Anstieg der CO2-Konzentration mit einem Rückgang der stomatären Leitfähigkeit verknüpft. Somit können Szenariosimulationen von veränderlichen Klimabedingungen zusammen mit erhöhten CO2-Konzentrationen und deren Auswirkungen auf die latenten Wärmeflüsse analysiert werden. Die Grünland- sowie auch die Agrarfläche zeigen verstärkte Evapotranspirationsraten unter erhöhten Temperatur- und CO2-Bedingungen, wohingegen der Waldstandort verminderte Evapotranspirationsraten zeigt. Hinsichtlich des CO2-Flusses reagieren alle drei berücksichtigten Landnutzungen mit erhöhten Aufnahmeraten von Kohlenstoff, wobei der Waldstandort den höchsten Anstieg aufweist. Schlussendlich ergaben die Szenariosimulationen bezüglich Evapotranspiration und CO2, dass die Unterschiede zwischen den Landnutzungen gegenüber denen des prognostizierten Klimawandels überwiegen.
|
Page generated in 0.048 seconds