• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamique Zénon quantique en électrodynamique quantique avec circuit / Quantum Zeno Dynamics in 3D Circuit-QED

Júlíusson, Kristinn 15 September 2016 (has links)
Cette thèse présente le travail expérimental effectué pour observer la dynamique quantique de Zénon (QZD) dans une architecture 'circuit-QED' tridimentionnelle fonctionnant à très basse température. Dans cette architecture, un circuit supraconducteur de type transmon, jouant le rôle d'un atome artificiel, est couplé au champ électromagnétique d'une cavité microonde. Les niveaux d'énergie de l'atome et de la cavité sont alignés d'une nouvelle manière, afin de manipuler les états de Fock individuels de la cavité, tout en minimisant sa non-linearité Kerr induite par le transmon. La dynamique Zénon est obtenue en pilotant classiquement le champ de la cavité, tout en excitant fortement une transition inter-niveaux d'énergie du transmon, conditionnée à un état de Fock particulier. Ce forcage maintient la population de l'état de Fock à zéro, et conduit à la dynamique Zeno. Cette dynamique est observée par mesure de sa fonction de Wigner à intervalles de temps réguliers, soit par tomographie de Wigner, soit par tomographie quantique standard et reconstruction de la matrice densité. Nous observons trois exemples de QZD, et analysons la décohérence observée à l'aide simulations quantiques du système. / This thesis presents experimental work aimed at observing the quantum Zeno dynamics (QZD) in 3D circuit-QED, where an artificial atom, consisting of a superconducting circuit called a transmon, is coupled to the electric field of a microwave cavity resonator. The transmon and resonator energy levels are aligned in a novel way enabling the manipulation of individual Fock states of the cavity, while minimizing its transmon-induced Kerr non-linearity. We induce the QZD by displacing classically the cavity field while continuously driving strongly a transmon transition specific to a particular Fock state, which keeps this Fock state population at zero. The QZD is then observed by measuring the Wigner function of the fields at regular time intervals, either by Wigner tomography or standard quantum tomography and reconstruction of the density matrix. We observe three examples of QZD, and analyze the observed decoherence with the help of quantum simulations of the system.
2

Contrôle Quantique et Protection de la Cohérence par effet Zénon, Applications à l'Informatique Quantique

Brion, Etienne 26 November 2004 (has links) (PDF)
Le contrôle quantique constitue un enjeu majeur de la Physique contemporaine. Après un bref tour d'horizon du domaine, nous présentons une méthode, appelée contrôle non holonôme, qui permet d'imposer à système quantique quelconque une évolution unitaire arbitrairement choisie. Dans le contexte de l'Informatique Quantique, cette technique peut être utilisée pour réaliser n'importe quelle porte quantique : à titre d'exemple, nous montrons comment appliquer une porte CNOT à un système de deux atomes de Césium froids en interaction.<br />L'interaction de l'ordinateur avec son environnement risque de compromettre sa fiabilité. Le développement récent de la correction d'erreurs quantiques, inspirée des techniques classiques, suggère néanmoins que ce danger peut être évité. Après une présentation succincte du cadre général de la correction d'erreurs, nous proposons une méthode de protection de l'information fondée sur l'effet Zénon. Cette méthode est ensuite appliquée à un atome de Rubidium.

Page generated in 0.0797 seconds