• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electro-thermal Characterizations, Compact Modeling and TCAD based Device Simulations of advanced SiGe : C BiCMOS HBTs and of nanometric CMOS FET / Contribution à la caractérisation électro-thermique, à la modélisation compacte et à la simulation TCAD de dispositifs avancés de type TBH SiGe : C et de dispositifs nanométrique CMOS FET

Sahoo, Amit Kumar 13 July 2012 (has links)
Ce travail de thèse présente une évaluation approfondie des différentes techniques de mesure transitoire et dynamique pour l’évaluation du comportement électro-thermique des transistors bipolaires à hétérojonctions HBT SiGe:C de la technologie BiCMOS et des transistors Métal-Oxyde-Semiconducteur à effet de champ (MOSFET) de la technologie CMOS 45nm. En particulier, je propose une nouvelle approche pour caractériser avec précision le régime transitoire d'auto-échauffement, basée sur des mesures impulsionelles. La méthodologie a été vérifiée par des mesures statiques à différentes températures ambiantes, des mesures de paramètres S à basses fréquences et des simulations thermiques transitoires. Des simulations thermiques par éléments finis (TCAD) en trois dimensions ont été réalisées sur les transistors HBTs de la technologie submicroniques SiGe: C BiCMOS. Cette technologie est caractérisée par une fréquence de transition fT de 230 GHz et une fréquence maximum d’oscillation fMAX de 290 GHz. Par ailleurs, cette étude a été réalisée sur les différentes géométries de transistor. Une évaluation complète des mécanismes d'auto-échauffement dans les domaines temporels et fréquentiels a été réalisée. Une expression généralisée de l'impédance thermique dans le domaine fréquentiel a été formulée et a été utilisé pour extraire cette impédance en deçà de la fréquence de coupure thermique. Les paramètres thermiques ont été extraits par des simulations compactes grâce au modèle compact de transistors auquel un modèle électro-thermique a été ajouté via le nœud de température. Les travaux théoriques développés à ce jour pour la modélisation d'impédance thermique ont été vérifiés avec nos résultats expérimentaux. Il a été montré que, le réseau thermique classique utilisant un pôle unique n'est pas suffisant pour modéliser avec précision le comportement thermique transitoire et donc qu’un réseau plus complexe doit être utilisé. Ainsi, nous validons expérimentalement pour la première fois, le modèle distribué électrothermique de l'impédance thermique utilisant un réseau nodal récursif. Le réseau récursif a été vérifié par des simulations TCAD, ainsi que par des mesures et celles ci se sont révélées en excellent accord. Par conséquent, un modèle électro-thermique multi-géométries basé sur le réseau récursif a été développé. Le modèle a été vérifié par des simulations numériques ainsi que par des mesures de paramètre S à basse fréquence et finalement la conformité est excellente quelque soit la géométrie des dispositifs. / An extensive evaluation of different techniques for transient and dynamic electro-thermal behavior of microwave SiGe:C BiCMOS hetero-junction bipolar transistors (HBT) and nano-scale metal-oxide-semiconductor field-effect transistors (MOSFETs) have been presented. In particular, new and simple approach to accurately characterize the transient self-heating effect, based on pulse measurements, is demonstrated. The methodology is verified by static measurements at different ambient temperatures, s-parameter measurements at low frequency region and transient thermal simulations. Three dimensional thermal TCAD simulations are performed on different geometries of the submicron SiGe:C BiCMOS HBTs with fT and fmax of 230 GHz and 290 GHz, respectively. A comprehensive evaluation of device self-heating in time and frequency domain has been investigated. A generalized expression for the frequency-domain thermal impedance has been formulated and that is used to extract device thermal impedance below thermal cut-off frequency. The thermal parameters are extracted through transistor compact model simulations connecting electro-thermal network at temperature node. Theoretical works for thermal impedance modeling using different networks, developed until date, have been verified with our experimental results. We report for the first time the experimental verification of the distributed electrothermal model for thermal impedance using a nodal and recursive network. It has been shown that, the conventional single pole thermal network is not sufficient to accurately model the transient thermal spreading behavior and therefore a recursive network needs to be used. Recursive network is verified with device simulations as well as measurements and found to be in excellent agreement. Therefore, finally a scalable electro-thermal model using this recursive network is developed. The scalability has been verified through numerical simulations as well as by low frequency measurements and excellent conformity has been found in for various device geometries.
2

Electro-thermal characterization, TCAD simulations and compact modeling of advanced SiGe HBTs at device and circuit level / Caractérisation électrothermique, simulations TCAD et modélisation compacte de transistors HBT en SiGe au niveau composant et circuit

D'Esposito, Rosario 29 September 2016 (has links)
Ce travail de thèse présente une étude concernant la caractérisation des effets électrothermiques dans les transistors bipolaires à hétérojonction (HBT) en SiGe. Lors de ces travaux, deux procédés technologiques BiCMOS à l’état de l’art ont été analysés: le B11HFC de Infineon Technologies (130nm) et le B55 de STMicroelectronics (55nm).Des structures de test dédiées ont étés conçues, pour évaluer l’impact électrothermique du back end of line (BEOL) de composants ayant une architecture à un ou plusieurs doigts d’émetteur. Une caractérisation complète a été effectuée en régime continu et en mode alternatif en petit et en grand signal. De plus, une extraction des paramètres thermiques statiques et dynamiques a été réalisée et présentée pour les structures de test proposées. Il est démontré que les figures de mérite DC et RF s’améliorent sensiblement en positionnant des couches de métal sur le transistor, dessinées de manière innovante et ayant pour fonction de guider le flux thermique vers l’extérieur. L’impact thermique du BEOL a été modélisé et vérifié expérimentalement dans le domaine temporel et fréquentiel et aussi grâce à des simulations 3D par éléments finis. Il est à noter que l’effet du profil de dopage sur la conductivité thermique est analysé et pris en compte.Des topologies de transistor innovantes ont étés conçues, permettant une amélioration des spécifications de l’aire de sécurité de fonctionnement, grâce à un dessin innovant de la surface d’émetteur et du deep trench (DTI).Un modèle compact est proposé pour simuler les effets de couplage thermique en dynamique entre les émetteurs des HBT multi-doigts; ensuite le modèle est validé avec de mesures dédiées et des simulations TCAD.Des circuits de test ont étés conçus et mesurés, pour vérifier la précision des modèles compacts utilisés dans les simulateurs de circuits; de plus, l’impact du couplage thermique entre les transistors sur les performances des circuits a été évalué et modélisé. Finalement, l’impact du dissipateur thermique positionné sur le transistor a été étudié au niveau circuit, montrant un réel intérêt de cette approche. / This work is focused on the characterization of electro-thermal effects in advanced SiGe hetero-junction bipolar transistors (HBTs); two state of the art BiCMOS processes have been analyzed: the B11HFC from Infineon Technologies (130nm) and the B55 from STMicroelectronics (55nm).Special test structures have been designed, in order to evaluate the overall electro-thermal impact of the back end of line (BEOL) in single finger and multi-finger components. A complete DC and RF electrical characterization at small and large signal, as well as the extraction of the device static and dynamic thermal parameters are performed on the proposed test structures, showing a sensible improvement of the DC and RF figures of merit when metal dummies are added upon the transistor. The thermal impact of the BEOL has been modeled and experimentally verified in the time and frequency domain and by means of 3D TCAD simulations, in which the effect of the doping profile on the thermal conductivity is analyzed and taken into account.Innovative multi-finger transistor topologies are designed, which allow an improvement of the SOA specifications, thanks to a careful design of the drawn emitter area and of the deep trench isolation (DTI) enclosed area.A compact thermal model is proposed for taking into account the mutual thermal coupling between the emitter stripes of multi-finger HBTs in dynamic operation and is validated upon dedicated pulsed measurements and TCAD simulations.Specially designed circuit blocks have been realized and measured, in order to verify the accuracy of device compact models in electrical circuit simulators; moreover the impact on the circuit performances of mutual thermal coupling among neighboring transistors and the presence of BEOL metal dummies is evaluated and modeled.

Page generated in 0.0878 seconds