Spelling suggestions: "subject:"semiconductor device modeling"" "subject:"emiconductor device modeling""
1 |
Mobility Modeling of Gallium Nitride NanowiresJanuary 2017 (has links)
abstract: Semiconductor nanowires have the potential to emerge as the building blocks of next generation field-effect transistors, logic gates, solar cells and light emitting diodes. Use of Gallium Nitride (GaN) and other wide bandgap materials combines the advantages of III-nitrides along with the enhanced mobility offered by 2-dimensional confinement present in nanowires. The focus of this thesis is on developing a low field mobility model for a GaN nanowire using Ensemble Monte Carlo (EMC) techniques. A 2D Schrödinger-Poisson solver and a one-dimensional Monte Carlo solver is developed for an Aluminum Gallium Nitride/Gallium Nitride Heterostructure nanowire. A GaN/AlN/AlGaN heterostructure device is designed which creates 2-dimensional potential well for electrons. The nanowire is treated as a quasi-1D system in this work. A self-consistent 2D Schrödinger-Poisson solver is designed which determines the subband energies and the corresponding wavefunctions of the confined system. Three scattering mechanisms: acoustic phonon scattering, polar optical phonon scattering and piezoelectric scattering are considered to account for the electron phonon interactions in the system. Overlap integrals and 1D scattering rate expressions are derived for all the mechanisms listed. A generic one-dimensional Monte Carlo solver is also developed. Steady state results from the 1D Monte Carlo solver are extracted to determine the low field mobility of the GaN nanowires. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2017
|
2 |
The Role of the Collisional Broadening of the States on the Low-Field Mobility in Silicon Inversion LayersJanuary 2017 (has links)
abstract: Scaling of the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) towards shorter channel lengths, has lead to an increasing importance of quantum effects on the device performance. Until now, a semi-classical model based on Monte Carlo method for instance, has been sufficient to address these issues in silicon, and arrive at a reasonably good fit to experimental mobility data. But as the semiconductor world moves towards 10nm technology, many of the basic assumptions in this method, namely the very fundamental Fermi’s golden rule come into question. The derivation of the Fermi’s golden rule assumes that the scattering is infrequent (therefore the long time limit) and the collision duration time is zero. This thesis overcomes some of the limitations of the above approach by successfully developing a quantum mechanical simulator that can model the low-field inversion layer mobility in silicon MOS capacitors and other inversion layers as well. It solves for the scattering induced collisional broadening of the states by accounting for the various scattering mechanisms present in silicon through the non-equilibrium based near-equilibrium Green’s Functions approach, which shall be referred to as near-equilibrium Green’s Function (nEGF) in this work. It adopts a two-loop approach, where the outer loop solves for the self-consistency between the potential and the subband sheet charge density by solving the Poisson and the Schrödinger equations self-consistently. The inner loop solves for the nEGF (renormalization of the spectrum and the broadening of the states), self-consistently using the self-consistent Born approximation, which is then used to compute the mobility using the Green-Kubo Formalism. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
|
3 |
Multi-level Integrated Modeling of Wide Bandgap Semiconductor Devices, Components, Circuits, and Systems for Next Generation Power ElectronicsSellers, Andrew Joseph January 2020 (has links)
No description available.
|
4 |
Multiscale Modeling of Silicon Heterojunction Solar CellsJanuary 2019 (has links)
abstract: Silicon photonic technology continues to dominate the solar industry driven by steady improvement in device and module efficiencies. Currently, the world record conversion efficiency (~26.6%) for single junction silicon solar cell technologies is held by silicon heterojunction (SHJ) solar cells based on hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). These solar cells utilize the concept of carrier selective contacts to improve device efficiencies. A carrier selective contact is designed to optimize the collection of majority carriers while blocking the collection of minority carriers. In the case of SHJ cells, a thin intrinsic a-Si:H layer provides crucial passivation between doped a-Si:H and the c-Si absorber that is required to create a high efficiency cell. There has been much debate regarding the role of the intrinsic a-Si:H passivation layer on the transport of photogenerated carriers, and its role in optimizing device performance. In this work, a multiscale model is presented which utilizes different simulation methodologies to study interfacial transport across the intrinsic a-Si:H/c-Si heterointerface and through the a-Si:H passivation layer. In particular, an ensemble Monte Carlo simulator was developed to study high field behavior of photogenerated carriers at the intrinsic a-Si:H/c-Si heterointerface, a kinetic Monte Carlo program was used to study transport of photogenerated carriers across the intrinsic a-Si:H passivation layer, and a drift-diffusion model was developed to model the behavior in the quasi-neutral regions of the solar cell. This work reports de-coupled and self-consistent simulations to fully understand the role and effect of transport across the a-Si:H passivation layer in silicon heterojunction solar cells, and relates this to overall solar cell device performance. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
|
5 |
Next Generation Integrated Behavioral and Physics-based Modeling of Wide Bandgap Semiconductor Devices for Power ElectronicsHontz, Michael Robert 28 August 2019 (has links)
No description available.
|
6 |
Compact Modeling of Short Channel Common Double Gate MOSFET Adapted to Gate-Oxide Thickness AsymmetrySharan, Neha January 2014 (has links) (PDF)
Compact Models are the physically based accurate mathematical description of the cir-cuit elements, which are computationally efficient enough to be incorporated in circuit simulators so that the outcome becomes useful for the circuit designers. As the multi-gate MOSFETs have appeared as replacements for bulk-MOSFETs in sub-32nm technology nodes, efficient compact models for these new transistors are required for their successful utilization in integrated circuits.
Existing compact models for common double-gate (CDG) MOSFETs are based on the fundamental assumption of having symmetric gate oxide thickness. In this work we explore the possibility of developing models without this approximation, while preserving the computational efficiency at the same level. Such effort aims to generalize the compact model and also to capture the oxide thickness asymmetry effect, which might prevail in practical devices due to process uncertainties and thus affects the device performance significantly.
However solution to this modeling problem is nontrivial due to the bias-dependent asym-metric nature of the electrostatic. Using the single implicit equation based Poisson so-lution and the unique quasi-linear relationship between the surface potentials, previous researchers of our laboratory have reported the core model for such asymmetric CDG MOSFET. In this work effort has been put to include Non-Quasistatic (NQS) effects, different small-geometry effects, and noise model to this core, so that the model becomes suitable for practical applications. It is demonstrated that the quasi-linear relationship between the surface potentials remains preserved under NQS condition, in the presence of all small geometry effects. This property of the device along with some other new techniques are used to develop the model while keeping the mathematical complexity at the same level of the models reported for the symmetric devices. Proposed model is verified against TCAD simulation for various device geometries and successfully imple-mented in professional circuit simulator. The model passes the source/drain symmetry test and good convergence is observed during standard circuit simulations.
|
7 |
Design And Modeling Of Radiation Hardened Ldmosfet For Space Craft Power SystemsShea, Patrick 01 January 2007 (has links)
NASA missions require innovative power electronics system and component solutions with long life capability, high radiation tolerance, low mass and volume, and high reliability in space environments. Presently vertical double-diffused MOSFETs (VDMOS) are the most widely used power switching device for space power systems. It is proposed that a new lateral double-diffused MOSFET (LDMOS) designed at UCF can offer improvements in total dose and single event radiation hardness, switching performance, development and manufacturing costs, and total mass of power electronics systems. Availability of a hardened fast-switching power MOSFET will allow space-borne power electronics to approach the current level of terrestrial technology, thereby facilitating the use of more modern digital electronic systems in space. It is believed that the use of a p+/p-epi starting material for the LDMOS will offer better hardness against single-event burnout (SEB) and single-event gate rupture (SEGR) when compared to vertical devices fabricated on an n+/n-epi material. By placing a source contact on the bottom-side of the p+ substrate, much of the hole current generated by a heavy ion strike will flow away from the dielectric gate, thereby reducing electrical stress on the gate and decreasing the likelihood of SEGR. Similarly, the device is hardened against SEB by the redirection of hole current away from the base of the device's parasitic bipolar transistor. Total dose hardness is achieved by the use of a standard complementary metal-oxide semiconductor (CMOS) process that has shown proven hardness against total dose radiation effects.
|
8 |
Electro-thermal Characterizations, Compact Modeling and TCAD based Device Simulations of advanced SiGe : C BiCMOS HBTs and of nanometric CMOS FET / Contribution à la caractérisation électro-thermique, à la modélisation compacte et à la simulation TCAD de dispositifs avancés de type TBH SiGe : C et de dispositifs nanométrique CMOS FETSahoo, Amit Kumar 13 July 2012 (has links)
Ce travail de thèse présente une évaluation approfondie des différentes techniques de mesure transitoire et dynamique pour l’évaluation du comportement électro-thermique des transistors bipolaires à hétérojonctions HBT SiGe:C de la technologie BiCMOS et des transistors Métal-Oxyde-Semiconducteur à effet de champ (MOSFET) de la technologie CMOS 45nm. En particulier, je propose une nouvelle approche pour caractériser avec précision le régime transitoire d'auto-échauffement, basée sur des mesures impulsionelles. La méthodologie a été vérifiée par des mesures statiques à différentes températures ambiantes, des mesures de paramètres S à basses fréquences et des simulations thermiques transitoires. Des simulations thermiques par éléments finis (TCAD) en trois dimensions ont été réalisées sur les transistors HBTs de la technologie submicroniques SiGe: C BiCMOS. Cette technologie est caractérisée par une fréquence de transition fT de 230 GHz et une fréquence maximum d’oscillation fMAX de 290 GHz. Par ailleurs, cette étude a été réalisée sur les différentes géométries de transistor. Une évaluation complète des mécanismes d'auto-échauffement dans les domaines temporels et fréquentiels a été réalisée. Une expression généralisée de l'impédance thermique dans le domaine fréquentiel a été formulée et a été utilisé pour extraire cette impédance en deçà de la fréquence de coupure thermique. Les paramètres thermiques ont été extraits par des simulations compactes grâce au modèle compact de transistors auquel un modèle électro-thermique a été ajouté via le nœud de température. Les travaux théoriques développés à ce jour pour la modélisation d'impédance thermique ont été vérifiés avec nos résultats expérimentaux. Il a été montré que, le réseau thermique classique utilisant un pôle unique n'est pas suffisant pour modéliser avec précision le comportement thermique transitoire et donc qu’un réseau plus complexe doit être utilisé. Ainsi, nous validons expérimentalement pour la première fois, le modèle distribué électrothermique de l'impédance thermique utilisant un réseau nodal récursif. Le réseau récursif a été vérifié par des simulations TCAD, ainsi que par des mesures et celles ci se sont révélées en excellent accord. Par conséquent, un modèle électro-thermique multi-géométries basé sur le réseau récursif a été développé. Le modèle a été vérifié par des simulations numériques ainsi que par des mesures de paramètre S à basse fréquence et finalement la conformité est excellente quelque soit la géométrie des dispositifs. / An extensive evaluation of different techniques for transient and dynamic electro-thermal behavior of microwave SiGe:C BiCMOS hetero-junction bipolar transistors (HBT) and nano-scale metal-oxide-semiconductor field-effect transistors (MOSFETs) have been presented. In particular, new and simple approach to accurately characterize the transient self-heating effect, based on pulse measurements, is demonstrated. The methodology is verified by static measurements at different ambient temperatures, s-parameter measurements at low frequency region and transient thermal simulations. Three dimensional thermal TCAD simulations are performed on different geometries of the submicron SiGe:C BiCMOS HBTs with fT and fmax of 230 GHz and 290 GHz, respectively. A comprehensive evaluation of device self-heating in time and frequency domain has been investigated. A generalized expression for the frequency-domain thermal impedance has been formulated and that is used to extract device thermal impedance below thermal cut-off frequency. The thermal parameters are extracted through transistor compact model simulations connecting electro-thermal network at temperature node. Theoretical works for thermal impedance modeling using different networks, developed until date, have been verified with our experimental results. We report for the first time the experimental verification of the distributed electrothermal model for thermal impedance using a nodal and recursive network. It has been shown that, the conventional single pole thermal network is not sufficient to accurately model the transient thermal spreading behavior and therefore a recursive network needs to be used. Recursive network is verified with device simulations as well as measurements and found to be in excellent agreement. Therefore, finally a scalable electro-thermal model using this recursive network is developed. The scalability has been verified through numerical simulations as well as by low frequency measurements and excellent conformity has been found in for various device geometries.
|
9 |
Variability Aware Device Modeling and Circuit Design in 45nm Analog CMOS TechnologyAjayan, K R January 2014 (has links) (PDF)
Process variability is a major challenge for the design of nano scale MOSFETs due to fundamental physical limits as well as process control limitations. As the size of the devices is scales down to improve performance, the circuit becomes more sensitive to the process variations. Thus, it is necessary to have a device model that can predict the variations of device characteristics. Statistical modeling method is a potential solution for this problem. The novelty of the work is that we connect BSIM parameters directly to the underlying process parameters. This is very useful for fabs to optimize and control the specific processes to achieve certain circuit metric. This methodology and framework is extendable to any future technologies, because we used a device independent, but process depended frame work
In the first part of this thesis, presents the design of nominal MOS devices with 28 nm physical gate length. The device is optimized to meet the specification of low standby power technology specification of International Technology Roadmap for Semiconductors ITRS(2012). Design of experiments are conducted and the following parameters gate length, oxide thickness, halo concentration, anneal temperature and title angle of halo doping are identified as the critical process parameters. The device performance factors saturation current, sub threshold current, output impendence and transconductance are examined under process variabilty.
In the subsequent sections of the thesis, BSIM parameter extraction of MOS devices using the software ICCAP is presented. The variability of the spice parameters due to process variation is extracted. Using the extracted data a new BSIM interpolated model for a variability aware circuit design is proposed assume a single process parameter is varying. The model validation is done and error in ICCAP extraction method for process variability is less than 10% for all process variation condition in 3σ range.
In the next section, proposes LUT model and interpolated method for a variability aware circuit design for single parameter variation. The error in LUT method for process variability reports less than 3% for all process variation condition in 3σ range. The error in perdition of drain current and intrinsic gain for LUT model files are very close to the result of device simulation. The focus of the work was to established effective method to interlink process and SPICE parameters under variability. This required generating a large number of BSIM parameter ducks. Since there could be some inaccuracy in large set of BSIM parameters, we used LUT as a golden standard. We used LUT modeling as a benchmark for validation of our BSIM3 model
In the final section of thesis, impact of multi parameter variation of the processes in device performance is modelled using RSM method; the model is verified using ANOVA method. Models are found to be sufficient and stable. The reported error is less than 1% in all cases. Monte Carlo simulation confirms stability and repeatability of the model. The model for random variabilty of process parameters are formulated using BSIM and compared with the LUT model. The model was tested using a benchmark circuit. The maximum error in Monte Carlo simulation is found to be less than 3% for output current and less than 8% for output impedance.
|
10 |
Electrothermal device-to-circuit interactions for half THz SiGe∶C HBT technologies / Interactions électrothermiques du transistor au circuit pour des technologies demi-THz TBH SiGe∶CWeisz, Mario 25 November 2013 (has links)
Ce travail concerne les transistors bipolaires à hétérogène TBH SiGe. En particulier, l'auto-échauffement des transistors unitaires et le couplage thermique avec leurs plus proches voisins périphériques sont caractérisés et modélisés. La rétroaction électrothermique intra- et inter-transistor est largement étudiée. En outre, l’impact des effets thermiques sur la performance de deux circuits analogiques est évalué. L'effet d'autoéchauffement est évalué par des mesures à basse fréquence et des mesures impulsionnelles DC et AC. L'auto-échauffement est diminué de manière significative en utilisant des petites largeurs d'impulsion. Ainsi la dépendance fréquentielle de l’autoéchauffementa été étudiée en utilisant les paramètres H et Y. De nouvelles structures de test ont été fabriqués pour mesurer l'effet de couplage. Les facteurs de couplage thermique ont été extraits à partir de mesures ainsi que par simulations thermiques 3D. Les résultats montrent que le couplage des dispositifs intra est très prononcé. Un nouvel élément du modèle de résistance thermique récursive ainsi que le modèle de couplage thermique a été inclus dans un simulateur de circuit commercial. Une simulation transitoire entièrement couplée d'un oscillateur en anneau de 218 transistors a été effectuée. Ainsi, un retard de porte record de 1.65ps est démontré. À la connaissance des auteurs, c'est le résultat le plus rapide pour une technologie bipolaire. Le rendement thermique d'un amplificateur de puissance à 60GHz réalisé avec un réseau multi-transistor ou avec un transistor à plusieurs doigts est évalué. La performance électrique du transistor multidoigt est dégradée en raison de l'effet de couplage thermique important entre les doigts de l'émetteur. Un bon accord est constaté entre les mesures et les simulations des circuits en utilisant des modèles de transistors avec le réseau de couplage thermique. Enfin, les perspectives sur l'utilisation des résultats sont données. / The power generate by modern silicon germanium (SiGe) heterojunction bipolar transistors (HBTs) can produce large thermal gradients across the silicon substrate. The device opering temperature modifies model parameters and can significantly affect circuit operation. This work characterizes and models self-heating and thermal coupling in SiGe HBTs. The self-heating effect is evaluated with low frequency and pulsed measurements. A novel pulse measurement system is presented that allows isothermal DC and RF measurements with 100ns pulses. Electrothermal intra- and inter-device feedback is extensively studied and the impact on the performance of two analog circuits is evaluated. Novel test structures are designed and fabricated to measure thermal coupling between single transistors (inter-device) as well as between the emitter stripes of a multi-finger transistor (intra-device). Thermal coupling factors are extracted from measurements and from 3D thermal simulations. Thermally coupled simulations of a ring oscillator (RO) with 218 transistors and of a 60GHz power amplifier (PA) are carried out. Current mode logic (CML) ROs are designed and measured. Layout optimizations lead to record gate delay of 1.65ps. The thermal performance of a 60GHz power amplifier is compared when realized with a multi-transistor array (MTA) and with a multi-finger trasistor (MFT). Finally, perspectives of this work within a CAD based circuit design environment are discussed.
|
Page generated in 0.1238 seconds