• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude par spectroscopies d'électrons d'interfaces métalliques et semiconductrices / Metallic and semiconducting interfaces studied by electron spectroscopies

Tournier-Colletta, Cédric 13 October 2011 (has links)
Cette thèse présente une étude des propriétés électroniques de systèmes de basse dimension à base de métaux et de semiconducteurs. La première partie de l'étude traite le confinement de l'état de Shockley dans des nanostructures tridimensionnelles d'Ag(111), par des mesures STM/STS à très basse température (5 K). Nous avons d'abord analysé en détail la structure en énergie et la distribution spatiale des modes confinés. Nous avons ensuite mis à profit la nature discrète du spectre en énergie pour étudier le temps de vie des quasiparticules. Un comportement typique de liquide de Fermi est mis en évidence, et nous montrons que le mécanisme de diffusion dominant est associé au couplage électron-phonon. La contribution extrinsèque provenant du confinement partiel de l'onde électronique a également été obtenue. Une loi d'échelle est observée avec la taille des nanostructures, ce qui permet d'extraire un coefficient de réflexion plus important que dans de simples ilôts monoatomiques. La seconde partie de l'étude est consacrée aux couches ultra-minces semiconductrices obtenues par dépôts d'alcalins (K, Rb, Cs) sur la surface Si(111):B-[racine]3. Ce travail résout la controverse concernant la nature de l'état fondamental de ce système, et notamment l'origine de la reconstruction 2[racine]3 obtenue à la saturation du taux de couverture. La compréhension en amont de la structure cristallographique permet d'élucider les propriétés électroniques. Nous montrons qu'une approche à un électron, conduisant à un isolant de bandes, décrit le système de manière convaincante, malgré l'indication de forts effets polaroniques. Ce résultat est le fruit d'une étude approfondie combinant des techniques diverses et complémentaires (LEED, ARPES, XPS, STM/STS et calcul DFT) / This thesis is devoted to the electronic properties of low-dimensional systems based on metal and semiconducting materials. The first part deals with the Shockley state confinement in Ag(111) nanostructures, by means of very-low temperature (5 K) STM/STS measurements. We study the electronic structure and spatial distribution of the confined modes. Then the discrete nature of the electronic spectrum allows one to yield the quasiparticule lifetime. A Fermi-liquid behaviour is evidenced and we show that the dominant decay mechanism is attributed to the electron-phonon coupling. The extrinsic contribution arising from the partial confinement of the electronic wave is obtained as well. A scaling law with the nanostructure width is demonstrated, from which we deduce a higher reflection amplitude than in monoatomic islands. In the second part of the thesis, we study semiconducting ultra-thin films produced by alkali (K, Rb, Cs) deposition on the Si(111):B-[root of]3 surface. This work solves the controversy concerning the ground state of this system, and especially the nature of the 2[root of]3 surface recontruction obtained at saturation coverage. Prior understanding of the crystallographic structure allows to elucidate the electronic properties. We show that a one-electron picture, leading to a band insulator scenario, gives a good description of the system, in spite of strong polaronic effects. This conclusion results from an in-depth, combined study of complementary techniques (LEED, ARPES, XPS, STM/STS and DFT calculations).

Page generated in 0.0514 seconds