• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 10
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 23
  • 15
  • 14
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Studies on Matrix Eigenvalue Problems in Terms of Discrete Integrable Systems / 離散可積分系による行列固有値問題の研究

Akaiwa, Kanae 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19341号 / 情博第593号 / 新制||情||103(附属図書館) / 32343 / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 中村 佳正, 教授 矢ケ崎 一幸, 教授 西村 直志 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
22

Studies on Non-autonomous Discrete Hungry Integrable Systems Associated with Some Eigenvalue Problems / 固有値問題に関連する非自励型離散ハングリー可積分系の研究

Shinjo, Masato 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20739号 / 情博第653号 / 新制||情||113(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 中村 佳正, 教授 山下 信雄, 教授 西村 直志 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
23

Integration methods for the time dependent neutron diffusion equation and other approximations of the neutron transport equation

Carreño Sánchez, Amanda María 01 June 2020 (has links)
[ES] Uno de los objetivos más importantes en el análisis de la seguridad en el campo de la ingeniería nuclear es el cálculo, rápido y preciso, de la evolución de la potencia dentro del núcleo del reactor. La distribución de los neutrones se puede describir a través de la ecuación de transporte de Boltzmann. La solución de esta ecuación no puede obtenerse de manera sencilla para reactores realistas, y es por ello que se tienen que considerar aproximaciones numéricas. En primer lugar, esta tesis se centra en obtener la solución para varios problemas estáticos asociados con la ecuación de difusión neutrónica: los modos lambda, los modos gamma y los modos alpha. Para la discretización espacial se ha utilizado un método de elementos finitos de alto orden. Diversas características de cada problema espectral se analizan y se comparan en diferentes reactores. Después, se investigan varios métodos de cálculo para problemas de autovalores y estrategias para calcular los problemas algebraicos obtenidos a partir de la discretización espacial. La mayoría de los trabajos destinados a la resolución de la ecuación de difusión neutrónica están diseñados para la aproximación de dos grupos de energía, sin considerar dispersión de neutrones del grupo térmico al grupo rápido. La principal ventaja de la metodología que se propone es que no depende de la geometría del reactor, del tipo de problema de autovalores ni del número de grupos de energía del problema. Tras esto, se obtiene la solución de las ecuaciones estacionarias de armónicos esféricos. La implementación de estas ecuaciones tiene dos principales diferencias respecto a la ecuación de difusión neutrónica. Primero, la discretización espacial se realiza a nivel de pin. Por tanto, se estudian diferentes tipos de mallas. Segundo, el número de grupos de energía es, generalmente, mayor que dos. De este modo, se desarrollan estrategias a bloques para optimizar el cálculo de los problemas algebraicos asociados. Finalmente, se implementa un método modal actualizado para integrar la ecuación de difusión neutrónica dependiente del tiempo. Se presentan y comparan los métodos modales basados en desarrollos en función de los diferentes modos espaciales para varios tipos de transitorios. Además, también se desarrolla un control de paso de tiempo adaptativo, que evita la actualización de los modos de una manera fija y adapta el paso de tiempo en función de varias estimaciones del error. / [CA] Un dels objectius més importants per a l'anàlisi de la seguretat en el camp de l'enginyeria nuclear és el càlcul, ràpid i precís, de l'evolució de la potència dins del nucli d'un reactor. La distribució dels neutrons pot modelar-se mitjançant l'equació del transport de Boltzmann. La solució d'aquesta equació per a un reactor realístic no pot obtenir's de manera senzilla. És per això que han de considerar-se aproximacions numèriques. En primer lloc, la tesi se centra en l'obtenció de la solució per a diversos problemes estàtics associats amb l'equació de difusió neutrònica: els modes lambda, els modes gamma i els modes alpha. Per a la discretització espacial s'ha utilitzat un mètode d'elements finits d'alt ordre. Algunes de les característiques dels problemes espectrals s'analitzaran i es compararan per a diferents reactors. Tanmateix, diversos solucionadors de problemes d'autovalors i estratègies es desenvolupen per a calcular els problemes obtinguts de la discretització espacial. La majoria dels treballs per a resoldre l'equació de difusió neutrònica estan dissenyats per a l'aproximació de dos grups d'energia i sense considerar dispersió de neutrons del grup tèrmic al grup ràpid. El principal avantatge de la metodologia exposada és que no depèn de la geometria del reactor, del tipus de problema d'autovalors ni del nombre de grups d'energia del problema. Seguidament, s'obté la solució de les equacions estacionàries d'harmònics esfèrics. La implementació d'aquestes equacions té dues principals diferències respecte a l'equació de difusió. Primer, la discretització espacial es realitza a nivell de pin a partir de l'estudi de diferents malles. Segon, el nombre de grups d'energia és, generalment, major que dos. D'aquesta forma, es desenvolupen estratègies a blocs per a optimitzar el càlcul dels problemes algebraics associats. Finalment, s'implementa un mètode modal amb actualitzacions dels modes per a integrar l'equació de difusió neutrònica dependent del temps. Es presenten i es comparen els mètodes modals basats en l'expansió dels diferents modes espacials per a diversos tipus de transitoris. A més a més, un control de pas de temps adaptatiu es desenvolupa, evitant l'actualització dels modes d'una manera fixa i adaptant el pas de temps en funció de vàries estimacions de l'error. / [EN] One of the most important targets in nuclear safety analyses is the fast and accurate computation of the power evolution inside of the reactor core. The distribution of neutrons can be described by the neutron transport Boltzmann equation. The solution of this equation for realistic nuclear reactors is not straightforward, and therefore, numerical approximations must be considered. First, the thesis is focused on the attainment of the solution for several steady-state problems associated with neutron diffusion problem: the $\lambda$-modes, the $\gamma$-modes and the $\alpha$-modes problems. A high order finite element method is used for the spatial discretization. Several characteristics of each type of spectral problem are compared and analyzed on different reactors. Thereafter, several eigenvalue solvers and strategies are investigated to compute efficiently the algebraic eigenvalue problems obtained from the discretization. Most works devoted to solve the neutron diffusion equation are made for the approximation of two energy groups and without considering up-scattering. The main property of the proposed methodologies is that they depend on neither the reactor geometry, the type of eigenvalue problem nor the number of energy groups. After that, the solution of the steady-state simplified spherical harmonics equations is obtained. The implementation of these equations has two main differences with respect to the neutron diffusion. First, the spatial discretization is made at level of pin. Thus, different meshes are studied. Second, the number of energy groups is commonly bigger than two. Therefore, block strategies are developed to optimize the computation of the algebraic eigenvalue problems associated. Finally, an updated modal method is implemented to integrate the time-dependent neutron diffusion equation. Modal methods based on the expansion of the different spatial modes are presented and compared in several types of transients. Moreover, an adaptive time-step control is developed that avoids setting the time-step with a fixed value and it is adapted according to several error estimations. / Carreño Sánchez, AM. (2020). Integration methods for the time dependent neutron diffusion equation and other approximations of the neutron transport equation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/144771
24

VARIATIONAL METHODS FOR IMAGE DEBLURRING AND DISCRETIZED PICARD'S METHOD

Money, James H. 01 January 2006 (has links)
In this digital age, it is more important than ever to have good methods for processing images. We focus on the removal of blur from a captured image, which is called the image deblurring problem. In particular, we make no assumptions about the blur itself, which is called a blind deconvolution. We approach the problem by miniming an energy functional that utilizes total variation norm and a fidelity constraint. In particular, we extend the work of Chan and Wong to use a reference image in the computation. Using the shock filter as a reference image, we produce a superior result compared to existing methods. We are able to produce good results on non-black background images and images where the blurring function is not centro-symmetric. We consider using a general Lp norm for the fidelity term and compare different values for p. Using an analysis similar to Strong and Chan, we derive an adaptive scale method for the recovery of the blurring function. We also consider two numerical methods in this disseration. The first method is an extension of Picards method for PDEs in the discrete case. We compare the results to the analytical Picard method, showing the only difference is the use of the approximation versus exact derivatives. We relate the method to existing finite difference schemes, including the Lax-Wendroff method. We derive the stability constraints for several linear problems and illustrate the stability region is increasing. We conclude by showing several examples of the method and how the computational savings is substantial. The second method we consider is a black-box implementation of a method for solving the generalized eigenvalue problem. By utilizing the work of Golub and Ye, we implement a routine which is robust against existing methods. We compare this routine against JDQZ and LOBPCG and show this method performs well in numerical testing.
25

Numerical Study of Mach Number Effects on Combustion Instability / Etude numérique des effets du nombre de Mach sur les instabilités de combustion

Wieczorek, Kerstin 08 November 2010 (has links)
L'évolution des turbines à gaz vers des régimes de combustion en mélange pauvre augmente la sensibilité de la flamme aux perturbations de l'écoulement. Plus particulièrement, cela augmente le risque que des instabilités de combustion apparaissent. Comme ces oscillations peuvent affecter le processus de combustion, il est très important d'être capable de prédire ce comportement au niveau de la conception.L'objectif du travail présenté est de développer un solveur numérique qui permet de décrire ces instabilités, et d'évaluer les effets du nombre de Mach de l'écoulement moyen sur ce phénomène. L'approche choisie consiste à résoudre les équations d'Euler linéarisées, qui sont écrites dans le domaine fréquentiel sous la forme d'un problème aux valeurs propres. Ce système d'équations permets de prendre en compte la vitesse moyenne de l'écoulement, et donc d'évaluer les effets causés par la convection et leur impact sur la stabilité des modes. Parmi les mécanismes qui peuvent être étudiés se trouve notamment l'effet des ondes d'entropie convectées, ce qui est particulièrement intéressant dans le contexte des chambres de combustions. Afin de déterminer l'effet des termes liés à la vitesse de l'écoulement moyen sur la stabilité des modes, une analyse de l'énergie contenue dans les perturbations est effectuée. Finalement, l'aspect de la non-orthogonalité des modes propres, qui permet une croissance d'énergie transitoire dans un système linéairement stable, est abordé. / The development of gas turbines towards lean combustion increases the susceptibility of the flame to flow perturbations, and leads more particularly to a higher risk of combustion instability. As these self-sustained oscillations may affect the performance of the combustion device, it is very important to be able to predict them at the design level. At present, several methods are used to describe combustion instabilities, ranging from complex LES and DNS calculations to low-order network models. An intermediate method consists in solving a set of equations describing the acoustic field using a finite volume technique, which is the approach used in the present study.This thesis discusses the impact of a non zero Mach number mean flow field on thermoacoustic instability. The study is based on the linearized Euler equations, which are stated in the frequency domain in the form of an eigenvalue problem. Using the linearized Euler equations rather than the Helmholtz equation avoids making the commonly used assumption of the mean flow being at rest, and allows to take into account convection effects and their impact on the stability of the system. Among the mechanisms that can be studied using the present approach is namely the impact of convected entropy waves, which is especially interesting in combustion applications.For this study, a 1D and a 2D numerical solver have been developed and are presented in this thesis. In order to asses the effect of the mean flow terms on the modes' stability, an analysis of the disturbance energy budget is performed. Finally, the aspect of the eigenmodes being non-orthogonal and thus allowing for transient growth in linearly stable systems is adressed.
26

Identification of Stiffness Reductions Using Partial Natural Frequency Data

Sokheang Thea (6620237) 15 May 2019 (has links)
In vibration-based damage detection in structures, often changes in the dynamic properties such as natural frequencies, modeshapes, and derivatives of modeshapes are used to identify the damaged elements. If only a partial list of natural frequencies is known, optimization methods may need to be used to identify the damage. In this research, the algorithm proposed by Podlevskyi & Yaroshko (2013) is used to determine the stiffness distribution in shear building models. The lateral load resisting elements are presented as a single equivalent spring, and masses are lumped at floor levels. The proposed method calculates stiffness values directly, i.e., without optimization, from the known partial list of natural frequency data and mass distribution. It is shown that if the number of stories with reduced stiffness is smaller than the number of known natural frequencies, the stories with reduced stiffnesses can be identified. Numerical studies on building models with two stories and four stories are used to illustrate the solution method. Effect of error or noise in given natural frequencies on stiffness estimates and, conversely, sensitivity of natural frequencies to changes in stiffness are studied using 7-, 15-, 30-, and 50-story numerical models. From the studies, it is learnt that as the number of stories increases, the natural frequencies become less sensitive to stiffness changes. Additionally, eight laboratory experiments were conducted on a five-story aluminum structural model. Ten slender columns were used in each story of the specimen. Damage was simulated by removing columns in one, two, or three stories. The method can locate and quantify the damage in cases presented in the experimental studies. It is also applied to a 1/3 scaled 18-story steel moment frame building tested on an earthquake simulator (Suita et al., 2015) to identify the reduction in the stiffness due to fractures of beam flanges. Only the first two natural frequencies are used to determine the reductions in the stiffness since the third mode of the tower is torsional and no reasonable planar spring-mass model can be developed to present all of the translational modes. The method produced possible cases of the softening when the damage was assumed to occur at a single story.
27

Faber-Krahn Type Inequalities for Trees

Biyikoglu, Türker, Leydold, Josef January 2003 (has links) (PDF)
The Faber-Krahn theorem states that among all bounded domains with the same volume in Rn (with the standard Euclidean metric), a ball that has lowest first Dirichlet eigenvalue. Recently it has been shown that a similar result holds for (semi-)regular trees. In this article we show that such a theorem also hold for other classes of (not necessarily non-regular) trees. However, for these new results no couterparts in the world of the Laplace-Beltrami-operator on manifolds are known. / Series: Preprint Series / Department of Applied Statistics and Data Processing
28

Inner-outer iterative methods for eigenvalue problems : convergence and preconditioning

Freitag, Melina January 2007 (has links)
Many methods for computing eigenvalues of a large sparse matrix involve shift-invert transformations which require the solution of a shifted linear system at each step. This thesis deals with shift-invert iterative techniques for solving eigenvalue problems where the arising linear systems are solved inexactly using a second iterative technique. This approach leads to an inner-outer type algorithm. We provide convergence results for the outer iterative eigenvalue computation as well as techniques for efficient inner solves. In particular eigenvalue computations using inexact inverse iteration, the Jacobi-Davidson method without subspace expansion and the shift-invert Arnoldi method as a subspace method are investigated in detail. A general convergence result for inexact inverse iteration for the non-Hermitian generalised eigenvalue problem is given, using only minimal assumptions. This convergence result is obtained in two different ways; on the one hand, we use an equivalence result between inexact inverse iteration applied to the generalised eigenproblem and modified Newton's method; on the other hand, a splitting method is used which generalises the idea of orthogonal decomposition. Both approaches also include an analysis for the convergence theory of a version of inexact Jacobi-Davidson method, where equivalences between Newton's method, inverse iteration and the Jacobi-Davidson method are exploited. To improve the efficiency of the inner iterative solves we introduce a new tuning strategy which can be applied to any standard preconditioner. We give a detailed analysis on this new preconditioning idea and show how the number of iterations for the inner iterative method and hence the total number of iterations can be reduced significantly by the application of this tuning strategy. The analysis of the tuned preconditioner is carried out for both Hermitian and non-Hermitian eigenproblems. We show how the preconditioner can be implemented efficiently and illustrate its performance using various numerical examples. An equivalence result between the preconditioned simplified Jacobi-Davidson method and inexact inverse iteration with the tuned preconditioner is given. Finally, we discuss the shift-invert Arnoldi method both in the standard and restarted fashion. First, existing relaxation strategies for the outer iterative solves are extended to implicitly restarted Arnoldi's method. Second, we apply the idea of tuning the preconditioner to the inner iterative solve. As for inexact inverse iteration the tuned preconditioner for inexact Arnoldi's method is shown to provide significant savings in the number of inner solves. The theory in this thesis is supported by many numerical examples.
29

The Application of Finite Element Methods to Aeroelastic Lifting Surface Flutter

Guertin, Matthew 06 September 2012 (has links)
Aeroelastic behavior prediction is often confined to analytical or highly computational methods, so I developed a low degree of freedom computational method using structural finite elements and unsteady loading to cover a gap in the literature. Finite elements are readily suitable for determination of the free vibration characteristics of eccentric, elastic structures, and the free vibration characteristics fundamentally determine the aeroelastic behavior. I used Theodorsen’s unsteady strip loading formulation to model the aerodynamic loading on linear elastic structures assuming harmonic motion. I applied Hassig’s ‘p-k’ method to predict the flutter boundary of nonsymmetric, aeroelastic systems. I investigated the application of a quintic interpolation assumed displacement shape to accurately predict higher order characteristic effects compared to linear analytical results. I show that quintic interpolation is especially accurate over cubic interpolation when multi-modal interactions are considered in low degree of freedom flutter behavior for high aspect ratio HALE aircraft wings.
30

A Faber-Krahn-type Inequality for Regular Trees

Leydold, Josef January 1996 (has links) (PDF)
In the last years some results for the Laplacian on manifolds have been shown to hold also for the graph Laplacian, e.g. Courant's nodal domain theorem or Cheeger's inequality. Friedman (Some geometric aspects of graphs and their eigenfunctions, Duke Math. J. 69 (3), pp. 487-525, 1993) described the idea of a ``graph with boundary". With this concept it is possible to formulate Dirichlet and Neumann eigenvalue problems. Friedman also conjectured another ``classical" result for manifolds, the Faber-Krahn theorem, for regular bounded trees with boundary. The Faber-Krahn theorem states that among all bounded domains $D \subset R^n$ with fixed volume, a ball has lowest first Dirichlet eigenvalue. In this paper we show such a result for regular trees by using a rearrangement technique. We give restrictive conditions for trees with boundary where the first Dirichlet eigenvalue is minimized for a given "volume". Amazingly Friedman's conjecture is false, i.e. in general these trees are not ``balls". But we will show that these are similar to ``balls". (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing

Page generated in 0.0745 seconds