• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • Tagged with
  • 14
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact Spherules From Western Australia : A Textural Analysis of Really Old Tiny Rocks

Ruth, Dawn C.S. January 2002 (has links)
No description available.
2

Étude du nuage de particules éjectées sous choc : apports de la Vélocimétrie Hétérodyne / Study of particles clouds ejected under shock : the contributions of Photonic Doppler Velocimetry.

Prudhomme, Gabriel 03 December 2014 (has links)
Une plaque métallique soumise à un choc (étain, quelques 10 GPa) se met en mouvement et subit divers endommagements comme l'écaillage ou l'éjection d'un nuage de particules. Deux principaux mécanismes sont à l'origine de ce nuage : la micro-éjection et le passage en fusion. La Vélocimétrie Hétérodyne (VH) est un diagnostic de mesure multi-vitesses résolue en temps. Son développement a été rendu possible dans les années 2000 ; sa conception, entièrement fibrée, permet une intégration aisée aux expériences de physique des chocs. L'objet de ce mémoire de doctorat est de qualifier les apports de la VH pour la caractérisation des nuages de particules hautement véloces (plusieurs km/s), notamment de ceux issus de la micro-éjection.Ce document propose un état de l'art des générateurs de choc, des diagnostics et des études (numériques ou expérimentales), associé à la physique de la micro-éjection métallique par des micro-stries. Une étude poussée du diagnostic VH est proposée. Elle conduit à la définition d'un spectrogramme temps-vitesse en unité de puissance collectée ainsi qu'une limite de détectivité du dispositif. Grâce à des modèles basés sur la physique de la diffusion, une limite en termes de diamètre de particules observables est annoncée. Un programme de simulation de spectrogramme VH est présenté dans le cadre des études de nuage. Enfin, plusieurs campagnes expérimentales sont exposées. Elles soulignent les capacités remarquables du moyen ; les résultats sont comparés aux simulations. La distribution en diamètre de particules a pu être inférée grâce au freinage imposé par le gaz ambiant ou d'autres gaz. Des analyses radiométriques sont également proposées. / A metal plate subjected to a shock (tin, 10 GPa) undergoes a variety of damages such as spalling or the ejection of a cloud of particles. Two main mechanisms govern the formation of this cloud: the micro-jetting and the melting under shock. Photonic Doppler Velocimetry (PDV, a.k.a. LDV or het-V) is a multi-velocity time-resolved diagnostic. Developed from 2000s, the all-fibered conception makes its integration easy into shock experiments. The purpose of the thesis is to describe the contributions of PDV systems for high-velocity (several km/s) particle-cloud characterization, including micro-jetting cloud.This document presents a state of the art of shock generators, diagnostics and (numerical and experimental) studies involved in metallic micro-machined jetting. An extensive study of a PDV system is proposed. It leads to the definition of time-velocity spectrogram, evaluated in units of collected power, and a detectivity limit. Thanks to photon diffusion models, a threshold in the diameter of the measured particle is estimated. A PDV spectrogram simulation program is shown within the framework of particle clouds. Finally, several experimental campaigns are exposed. They emphasize the remarkable capacities of the system; results are compared to simulations. Diameter distributions are inferred using slowing down in air or in other gazes. Some radiometric analyses are also performed.
3

Atmospheric Interactions during Global Deposition of Chicxulub Impact Ejecta

Goldin, Tamara Joan January 2008 (has links)
Atmospheric interactions affected both the mechanics of impact ejecta deposition and the environmental effects from the catastrophic Chicxulub impact at the Cretaceous-Paleogene (K-Pg) boundary. Hypervelocity reentry and subsequent sedimentation of Chicxulub impact spherules through the Earth's atmosphere was modeled using the KFIX-LPL two-phase flow code, which includes thermal radiation and operates at the necessary range of flow regimes and velocities. Spherules were injected into a model mesh approximating a two-dimensional slice of atmosphere at rates based on ballistic models of impact plume expansion. The spherules decelerate due to drag, compressing the upper atmosphere and reaching terminal velocity at ~70 km in altitude. A band of spherules accumulates at this altitude, below which is compressed cool air and above which is hot (>3000 K) relatively-empty atmosphere.Eventually the spherule-laden air becomes unstable and density currents form, transporting the spherules through the lower atmosphere collectively as plumes rather than individually at terminal velocity. This has implications for the depositional style and sedimentation rate of the global K-Pg boundary layer. Vertical density current formation in both incompressible (water) and compressible (air) fluids is evaluated numerically via KFIX-LPL simulations and analytically using new instability criteria. Models of density current formation due to particulate loading of water are compared to tephra fall experiments in order to validate the model instabilities.The impact spherules themselves obtain peak temperatures of 1300-1600 K and efficiently radiate that heat as thermal radiation. However, the downward thermal radiation emitted from decelerating spherules is increasingly blocked by previously-entered spherules settling lower in the atmosphere. This self-shielding effect strengthens with time as the settling spherule cloud thickens and becomes increasingly opaque, limiting both the magnitude and duration of the thermal pulse at the ground. For a nominal Chicxulub reentry model, the surface irradiance peaks at 6 kW/m <super>2 </super> and is above normal solar fluxes for ~25 minutes. Although biologic effects are still likely, self-shielding by spherules may have prevented the global wildfires previously postulated. However, submicron dust may act as a hot opaque cap in the upper atmosphere, potentially increasing the thermal pulse beyond the threshold for forest ignition.
4

Investigation of Charon's Craters With Abrupt Terminus Ejecta, Comparisons With Other Icy Bodies, and Formation Implications

Robbins, Stuart J., Runyon, Kirby, Singer, Kelsi N., Bray, Veronica J., Beyer, Ross A., Schenk, Paul, McKinnon, William B., Grundy, William M., Nimmo, Francis, Moore, Jeffrey M., Spencer, John R., White, Oliver L., Binzel, Richard P., Buie, Marc W., Buratti, Bonnie J., Cheng, Andrew F., Linscott, Ivan R., Reitsema, Harold J., Reuter, Dennis C., Showalter, Mark R., Tyler, G. Len, Young, Leslie A., Olkin, Catherine B., Ennico, Kimberly S., Weaver, Harold A., Stern, S. Alan 01 1900 (has links)
On the moon and other airless bodies, ballistically emplaced ejecta transitions from a thinning, continuous inner deposit to become discontinuous beyond approximately one crater radius from the crater rim and can further break into discrete rays and secondary craters. In contrast, on Mars, ejecta often form continuous, distinct, and sometimes thick deposits that transition to a low ridge or escarpment that may be circular or lobate. The Martian ejecta type has been variously termed pancake, rampart, lobate, or layered, and in this work we refer to it as abrupt termini ejecta (ATE). Two main formation mechanisms have been proposed, one requiring interaction of the ejecta with the atmosphere and the other mobilization of near-surface volatiles. ATE morphologies are also unambiguously seen on Ganymede, Europa, Dione, and Tethys, but they are not as common as on Mars. We have identified up to 38 craters on Charon that show signs of ATE, including possible distal ramparts and lobate margins. These ejecta show morphologic and morphometric similarities with other moons in the solar system, which are a subset of the properties observed on Mars. From comparison of these ejecta on Charon and other solar system bodies, we find the strongest support for subsurface volatile mobilization and ejecta fluidization as the main formation mechanism for the ATE, at least on airless, icy worlds. This conclusion comes from the bodies on which they are found, an apparent preference for certain terrains, and the observation that craters with ATE can be near to similarly sized craters that only have gradational ejecta.
5

Drop Impacts Under Extreme Conditions on Thin Liquid Films or Solid Walls

Aljedaani, Abdulrahman Barakat 10 1900 (has links)
Drop impacts play a key role in many industrial applications, from spray coating of surfaces, to splashing of fuel-droplets within combustion chambers. Splashing, or break-up during ink-jet printing, can cross-contaminate biological assays, or degrade the quality of ink-jet printed products. Crime scene studies of blood splatter can give vital clues for the police. Spreading of plant diseases between nearby leaves by splashing depends on the velocity and trajectory of secondary droplets. In this dissertation, I study the early dynamics of splashing and the dynamics of ejecta sheets under extreme impact conditions, using ultra-high-speed video imaging at up to 5 million fps. In the first part, I show the effect of the surface tension differences on the break-up of the Edgerton crown, I verify that individual droplets hit the crown wall and generated Marangoni holes, thereby causing the crown wall to rupture at multiple locations. In the second part, I investigate the splashing of a drop impacting onto a solid substrate with high impact velocity, I show that for sufficiently high Re, splashing can no longer be suppressed by only reducing the surrounding air pressure. Furthermore, I tracked the earliest splashed spray droplets to catch their maximum velocity. Surprisingly, the splashed droplets can travel at extremely high speed of up to 1 km/s, which is 50 times faster than the impact speed. The influence of viscosity on the lamellar spreading along the substrate was investigated. I find that the intact lamella, following the fine spray, spreads as R(t) ~〖 t〗^(1/3) , while the maximum spreading radius of the drop was shown to be a strong function of viscosity, scaling as β_max∝〖Re〗^0.175. The data did not show a strong effect of surface tension on β_max over a wide range. Therefore, I concluded that surface tension at this parameter space does not play a major role in both splashing nor spreading. In the third part, I study extreme splashing dynamics of the Ejecta sheet when a drop impacts on a thin liquid film with very large impact velocities using the same device, at up to ~ 22 m/s. For this purpose, we have constructed a novel experimental device consisting of a 26-m-tall vacuum tube. I investigate the interplay between viscosity, the surrounding ambient air pressure, and surface tension, on the ejecta shapes and break-up. I show how the bending of the ejecta sheet is primarily produced by air-resistance. This is supported by an analytical and numerical model to quantify the effect of the surrounding air pressure on the sheet bending and touch-down.
6

A compositional study of the lunar global megaregolith using clementine orbiter data

Jackson, Noel William January 2005 (has links)
This thesis presents new information about the global megaregolith of the Moon, using 2059 craters (5 to 50 km diameter) as natural probes. Iron (FeO) and titanium (TiO2) concentrations were obtained from crater ejecta blanket data over an area between 600 North to 600 South latitude derived from the 1994 Clementine mission. The average iron and titanium weight percentages for lunar crater ejecta were calculated using the US Geological Survey's ISIS software, and used to determine the variation with depth of iron (FeO) and titanium (TiO2) in the highlands, mare areas and the South Pole Aitken basin. In addition, megaregolith compositional Iron (FeO) and Titanium (TiO2) Maps and compositional Province Maps were generated, and studied in detail. The Lunar Megaregolith Iron Province Map divides the Highland areas into 2 distinct provinces of low-iron Highland I (0-3.7 FeO weight percentage) and low-medium level iron Highland II (3.8-6.4%), and the Mare and South Pole Aitken Basin each into 3 distinct provinces (6.5-9.7%, 9.8-13.6%, and 13.7-18.3%). Similarly, a Titanium Megaregolith Province Map divides the Moon globally into 5 provinces based on weight percentages of TiO2. A new finding is the Highland II Province of elevated iron concentration which surrounds basins. These elevated iron levels may be explained in terms of an "Intrusion Model". In this model, basin formation fractures the surrounding anorthositic bedrock, and the middle level anorthositic crust allows mafic (basaltic?) magma to intrude. This intrusion into the megaregolith is in the form of sills and dykes from deep mafic sources but generally does not intrude into the surface regolith. In some places however, the mafic (basaltic?) lava may have extruded onto the surface, such as near Crater 846 (15.6N 92.2W). The megaregolith, which consists of large volume breccia, would have voids and vacancies in this structure into which mafic or basaltic material could intrude. "Islands" of Highland I Province material surrounded by Highland II Province indicate this intrusion was non-uniform. Another possible explanation for the Highland II Province iron levels comes from the "Thrust Block" model, where deep mafic material has been broken into large blocks by the basin-forming events, and "thrusted" or uplifted to displace most of the overlying anorthosite bedrock, thereby mechanically mixing with the megaregolith to provide the additional iron input. However, this does entirely fit comfortably with the data in this study. A third explanation for the Highland II Province arises from the "Basin Impact Ejecta Model" such as the Imbrium Impact described by Haskin (1998). The Basin Impact Ejecta model describes the effect of basin impacts around 4.0 billion to 3.8 billion years ago in the Moon's history (Ryder, 1990; Taylor, 2001)). This model implies that basin material was ejected and deposited on a global or similar scale. However, the results of this study place severe limitations on the feasibility of the "Basin Impact Ejecta" model to explain any significant mafic input from such ejecta in forming the Highland II megaregolith material. These Province Maps provide a new dimension to the study of the Moon's crustal development and reveal a highly complex history, providing a basis for future study.
7

Modélidation de la propagation des ondes sismiques et des ejecta dans les astéroïdes: application à l'érosion des cratères de l'astéroïde 433-Eros

Blitz, Céline 22 April 2009 (has links) (PDF)
La présente thèse décrit l'application de la sismologie aux astéroïdes à travers deux objectifs principaux : évaluer le comportement d'un astéroïde suite à une excitation sismique et proposer des hypothèses justifiant le déficit en petits cratères observé sur l'astéroïde 433 Eros. Cet astéroïde, imagé par la sonde NEAR durant l'année 2000-2001, montre une surface constituée de régolite (roche inconsolidée, broyée par les impacts) et déficitaire en petits cratères de taille inférieure à 200 m environ. Le premier objectif a consisté, après une étude préliminaire sur les modes propres (e.g., Lognonné et Clévédé, 2002) de petits modèles d'astéroïdes sphériques, à simuler les vibrations de modèles 2-D et 3-D de l'astéroïde Eros soumis à une source sismique grâce à la méthode des éléments spectraux. Cette méthode consiste à approximer la solution de l'équation d'onde sur un maillage de l'objet étudié (e.g., Komatitsch et Tromp, 1999). Les simulations de propagation d'onde effectuées sur les divers modèles de l'astéroïde Eros suggèrent un rôle important de la couche de régolite en tant que guide d'onde à l'origine d'une amplification des signaux sismiques en surface. De même, pour une étude des signaux enregistrés en surface de l'astéroïde, la présence d'une couche de régolite semble occulter l'effet d'une structure interne (tel un réseau de fractures). Le second objectif de la thèse consiste à expliquer le déficit en petits cratères observé sur l'astéroïde 433 Eros. La simulation du rebouchage des cratères par recouvrement des débris d'impacts permet d'expliquer une partie du déficit en petits cratères mais pas tout (Blitz et al., 2009). Nous avons donc simulé le rebouchage des cratères par les glissements de terrains sur les bords des cratères déclenchés par les vibrations résultant des impacts (Richardson et al., 2005) à partir de simulations de propagation d'onde effectuées dans un modèle 3-D de l'astéroïde Eros. L'action simultanée de ces deux moyens d'érosion permet de simuler une population de cratères semblable à celle observée sur Eros pour un temps d'exposition aux impacteurs de la Ceinture Principale d'Astéroïde d'environ 600 Ma.
8

Ponds, Flows, and Ejecta of Impact Cratering and Volcanism: A Remote Sensing Perspective of a Dynamic Moon

January 2016 (has links)
abstract: Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and volcanic craters can also include a high percentage of melted rock. Using Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) images, crucial details of these landforms are finally revealed, suggesting a much more dynamic Moon than is generally appreciated. Impact melt ponds and flows at craters as small as several hundred meters in diameter provide empirical evidence of abundant melting during the impact cratering process (much more than was previously thought), and this melt is mobile on the lunar surface for a significant time before solidifying. Enhanced melt deposit occurrences in the lunar highlands (compared to the mare) suggest that porosity, target composition, and pre-existing topography influence melt production and distribution. Comparatively deep impact craters formed in young melt deposits connote a relatively rapid evolution of materials on the lunar surface. On the other end of the spectrum, volcanic eruptions have produced the vast, plains-style mare basalts. However, little was previously known about the details of small-area eruptions and proximal volcanic deposits due to a lack of resolution. High-resolution images reveal key insights into small volcanic cones (0.5-3 km in diameter) that resemble terrestrial cinder cones. The cones comprise inter-layered materials, spatter deposits, and lava flow breaches. The widespread occurrence of the cones in most nearside mare suggests that basaltic eruptions occur from multiple sources in each basin and/or that rootless eruptions are relatively common. Morphologies of small-area volcanic deposits indicate diversity in eruption behavior of lunar basaltic eruptions driven by magmatic volatiles. Finally, models of polar volatile behavior during impact-heating suggest that chemical alteration of minerals in the presence of liquid water is one possible outcome that was previously not thought possible on the Moon. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2016
9

Meteoroid and ejecta modeling with KFIX

Michael A Carlson (18309073) 04 April 2024 (has links)
<p dir="ltr">Here we present two studies of different aspects of meteoritic impacts. The first study is about the behavior of ejecta plumes after a hypervelocity impact onto a body with an atmosphere. The second study looks at the effect vaporization has on meteoroids as they descend through Earth's atmosphere, specifically the effect permeability and meteor size have on the vaporization during their explosive fragmentation.</p><p dir="ltr">Atmospheres play an important role in ejecta deposition after an impact event. Many impact experiments and simulations neglect the effect of atmospheres. In the first study, we simulate ejecta plumes created by craters with transient diameters of 2 km and 20 km on Mars and Earth to show the difference atmospheric density and crater size have on the strength of the interaction. The interaction of ejecta with an atmosphere is explored in this study using a two-fluid hydrocode that simultaneously simulates ejecta and atmospheres as coupled, continuum fields to correctly capture the transfer of mass, energy, and momentum between the two. Here we study the effect of vaporization of plume material as well as the effect of the bow shock. We find that only the fastest ejecta is vaporized with a peak vaporized mass of 2.5x10<sup>5</sup> kg, 3.5 s after the impact in our 2 km diameter Terrestrial crater. Terrestrial meteorites are preferentially formed from the fastest ejecta. However, that fastest ejecta is mostly vaporized in our simulations, so to form a Terrestrial meteorite there must be a sufficiently large impact for solid material to be ejected and not vaporize. Thus, we place a lower limit of 33 km on the size of crater needed to generate terrestrial meteorites, but the crater size needed could be substantially larger. The bow shocks in our simulations result in lofting of ejecta, especially vaporized material, in the wake of the impactor. We find that Mars' thin atmosphere slows the ejecta but does not significantly change the trajectory of the plume. Earth's atmosphere can stop and entrain ejecta particles to suspend heated material long after the majority of material has already been deposited, resulting in 4x10<sup>10</sup> kg of material being suspended in the atmosphere 100 seconds after the impact for a 2 km diameter crater. For larger craters, we find that Earth's atmosphere has a more limited effect and ejecta more closely follows a ballistic trajectory.</p><p dir="ltr">The 1908 Tunguska bolide event and the 2013 Chelyabinsk bolide event underscore the potential damage posed by relatively small meteoroids as compared to the dinosaur-killing Chicxulub meteoroid. In this study, we model Tunguska- and Chelyabinsk-sized bolide events, extending the work of Tabetah and Melosh (2018) by exploring a larger parameter space and introducing the novel feature of material vaporization. Building upon their findings that the porosity and permeability of a meteoroid significantly influence fragmentation, we investigate additional factors such as meteoroid size, entry speed, and entry angle. Furthermore, we demonstrate that vaporization plays a crucial role, lowering the fragmentation height by extracting energy through latent heat. We find that a larger meteoroid size or higher entry speed increases the amount of vaporization that occurs while lowering the altitude of disruption of the meteoroid, and that a shallower entry angle decreases the amount of vaporization and increases the altitude of disruption. Our study not only refines the understanding of bolide events but also introduces a novel perspective with potential implications for planetary science and impact risk assessment.</p>
10

Reconstitution du flux d'impact et des variations paléoclimatiques martiennes par la datation des cratères à éjecta lobés / Reconstitution of the impact rate and martian paleoclimatic variations by layered ejecta craters dating

Lagain, Anthony 17 November 2017 (has links)
Le comptage de cratères sur une surface planétaire est à l’heure actuelle le seul moyen de préciser la temporalité des événements ayant marqué l’histoire des corps telluriques. Cette technique nécessite de connaitre précisément le taux avec lequel se forme les cratères d’impact, c'est-à-dire le flux d’impact, mais aussi son évolution en fonction du diamètre des cratères, la fonction de production. Ensemble, ces deux variables forment le système de chronologie d’un corps planétaire. Il est relativement bien contraint entre 3,9 et 3,5 milliards d’années avant notre ère et considéré comme constant depuis 3 milliards d’années, une hypothèse remise en cause par des observations lunaires et terrestres. Les cratères d’impact à éjecta lobés sont très nombreux sur Mars. Leur morphologie traduit la présence d’une grande quantité de glace d’eau dans le sous-sol au moment de l’impact. La variation spatio-temporelle de cette couche est très peu contrainte. Celle-ci est principalement influencée par l’obliquité de la planète. Leurs nappes d’éjecta sont continues et constituent donc des surfaces idéales pour dater leur formation. L’objectif de cette thèse est de mieux contraindre la chronologie martienne et la variation de l’extension de la couche de volatiles présente sous la surface de Mars responsable de telles morphologies. Par la datation de la mise en place d’une population de cratères à éjecta lobés situés sur Acidalia Planitia, il a été possible de comparer leur fréquence de formation avec le flux d’impact qui a été utilisé pour les dater. Un important désaccord entre nos données et le modèle à flux constant a pu être observé. Un test d’autocohérence entre le flux d’impact mesuré et le flux utilisé pour dater chaque cratère a permis de montrer que le taux d’impact le plus en accord avec nos données était celui présentant un pic de cratérisation entre 0,5 milliards d’années et la période actuelle. Ce pic est associé à deux collisions dans la ceinture principale d’astéroïdes. Néanmoins, cette méthode inverse est soumise à un problème logique mis en évidence par la simulation d’une population de cratères synthétiques. Il apparaît à posteriori que la variable temporelle de la chronologie martienne doit être la fonction de production des cratères d’une centaine de mètres de diamètre. Ces résultats modifient profondément l’âge des surfaces martiennes qui peuvent être mesurés par comptage de cratères. La datation de l’ensemble des cratères martiens dont les nappes d’éjecta lobés sont très étendues a permis également de mettre en évidence une augmentation de l’âge de ces cratères avec la diminution en latitude. Nous avons interprété ces observations comme étant le résultat de l’évolution récente de l’extension de la couche riche en volatils sous la surface de Mars, en lien avec la variation de l’obliquité de la planète. En effet, une diminution de l’angle d’obliquité de Mars il y a 4 millions d’années a restreint l’extension de la couche de volatils à haute latitude. Le lien étroit entre la localisation de ces cratères et leurs âges a permis de poser certaines conditions quant à l’évolution possible de l’obliquité martienne sur les 80 derniers millions d’années. Enfin, la révision de la base de données de cratères martiens la plus complète à ce jour au moyen d’une interface accessible à tous a permis de créer le premier catalogue de cratères adapté à la datation de surfaces martiennes. Nous avons pour cela mis en place une classification des cratères permettant l’exclusion, lors d’une datation, des cratères de type secondaire, fantôme ainsi que des fausses détections contenus dans la base de donnée originelle. / Counting craters on planetary surfaces is currently the only way to precise the events temporality which have marked the history of terrestrial bodies. This technique requires the precise knowledge of the rate with which impact craters are emplaced over time, the impact flux, but also its evolution in function of crater diameter, the production function. Together, these two variables constitute the chronology system of a planetary body. This system is relatively well constrained between 3,9 and 3,5 billion years before present and considered to be constant since 3 billion years, a hypothesis challenged by earthly and lunar observations. Layered ejecta craters are numerous on Mars. Their morphology is related to the presence of ice-rich material in the subsurface at the moment of the impact. The spatial and temporal evolution of this layer is poorly constrained. This one is primarily influenced by the obliquity of Mars. Their ejecta blankets are continuous and therefore constitute ideal surfaces to date the impact itself. The purpose of this thesis is to better constraint the Martian chronology and to better understand the variation of volatiles layer extent present under the surface of Mars. By the dating of the formation of a layered ejecta crater population located on Acidalia Planitia, it has been possible to compare the emplacement frequency of these structures with the impact flux that has been used to date them. An important mismatch between our data and the constant flux has been noted. An auto-consistency test between the measured impact rate and the rate used to date each crater has shown that the most consistent flux with our data is a cratering spike between 0,5 billion years and the actual period. This spike is associated to two main asteroid break-ups in the main asteroid belt. Nevertheless, this inverse method is challenged by a logical problem highlighted by the simulation of a synthetic population of craters. It appears a posteriori that the temporal fluctuation of the Martian chronology comes from the production function of impact craters of hundred meters of diameter. These results modify considerably the age of the Martian surface that we can measure by counting craters. The dating of all craters which exhibits a high extent of their ejecta blankets has also allowed to highlight an increasing of their age with the decreasing of the latitude. We have interpreted this observation by the result of the late evolution of the volatiles layer extent under the surface of Mars, linked to the shift of the obliquity. A decreasing of the Martian obliquity angle there was 4 million years ago has restricted the volatiles layer extent to high latitude. The close link between the location of these craters and their ages has allowed us to set some conditions of possible evolution of the Martian obliquity during the last 80 Myrs. Finally, the correction of the most complete Martian crater database thanks to a web interface accessible to everyone has allowed to create the first crater catalogue adapted to the martian surface dating. We have developed a crater classification allowing the exclusion, during a surface dating, of secondary craters, ghosts craters as well as false detections contained in the original database.

Page generated in 0.0282 seconds